• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Evidence for Late-time Feedback from the Discovery of Multiphase Gas in a Massive Elliptical at z = 0.4

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Zahedy_2020_ApJL_904_L10.pdf
    Size:
    2.771Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Zahedy, Fakhri S.
    Chen, Hsiao-Wen
    Boettcher, Erin
    Rauch, Michael
    Decker French, K.
    Zabludoff, Ann I.
    Affiliation
    Univ Arizona, Dept Astron
    Univ Arizona, Steward Observ
    Issue Date
    2020-11-19
    Keywords
    Quasar absorption line spectroscopy
    Circumgalactic medium
    Elliptical galaxies
    Galaxy abundances
    Galaxy formation
    
    Metadata
    Show full item record
    Publisher
    IOP PUBLISHING LTD
    Citation
    Zahedy, F. S., Chen, H. W., Boettcher, E., Rauch, M., French, K. D., & Zabludoff, A. I. (2020). Evidence for Late-time Feedback from the Discovery of Multiphase Gas in a Massive Elliptical at z = 0.4. The Astrophysical Journal Letters, 904(1), L10.
    Journal
    ASTROPHYSICAL JOURNAL LETTERS
    Rights
    © 2020. The American Astronomical Society. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    We report the first detection of multiphase gas within a quiescent galaxy beyond z approximate to 0. The observations use the brighter image of doubly lensed QSO HE 0047-1756 to probe the interstellar medium (ISM) of the massive (M-star approximate to 10(11) M-circle dot) elliptical lens galaxy at z(gal) = 0.408. Using Hubble Space Telescope's Cosmic Origins Spectrograph (COS), we obtain a medium-resolution FUV spectrum of the lensed QSO and identify numerous absorption features from H-2 in the lens ISM at projected distance d = 4.6 kpc. The H-2 column density is log N(H-2)/cm(-2) 17.8(-0.3)(+0.1) with a molecular gas fraction of f(H2) = 2%-5% , roughly consistent with some local quiescent galaxies. The new COS spectrum also reveals kinematically complex absorption features from highly ionized species O VI and N V with column densities log N(O VI) cm(-2) = 15.2 +/- 0.1 and log N(N V) cm(-2) = 14.6 +/- 0.1, among the highest known in external galaxies. Assuming the high-ionization absorption features originate in a transient warm (T similar to 105 K) phase undergoing radiative cooling from a hot halo surrounding the galaxy, we infer a mass accretion rate of similar to 0.5-1.5 M-circle dot yr(-1). The lack of star formation in the lens suggests that the bulk of this flow is returned to the hot halo, implying a heating rate of similar to 1048 erg yr(-1). Continuous heating from evolved stellar populations (primarily SNe Ia but also winds from AGB stars) may suffice to prevent a large accumulation of cold gas in the ISM, even in the absence of strong feedback from an active nucleus.
    ISSN
    2041-8205
    EISSN
    2041-8213
    DOI
    10.3847/2041-8213/abc48d
    Version
    Final published version
    Sponsors
    Space Telescope Science Institute
    ae974a485f413a2113503eed53cd6c53
    10.3847/2041-8213/abc48d
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.