Show simple item record

dc.contributor.authorLiu, Tong
dc.contributor.authorMoon, Yong Suk
dc.date.accessioned2021-05-05T23:57:00Z
dc.date.available2021-05-05T23:57:00Z
dc.date.issued2020-11-19
dc.identifier.citationLiu, T., & Moon, Y. S. (2020). Relative crystalline representations and p-divisible groups in the small ramification case. Algebra & Number Theory, 14(10), 2773-2789.en_US
dc.identifier.issn1937-0652
dc.identifier.doi10.2140/ant.2020.14.2773
dc.identifier.urihttp://hdl.handle.net/10150/658174
dc.description.abstractLet k be a perfect field of characteristic p > 2, and let K be a finite totally ramified extension over W (k)[ ] 1 pof ramification degreee. LetR0 be a relative base ring over W (k)〈t±1 1, …, tm±1〉 satisfying some mild conditions, and let R = R0 ⊗W (k) O ( [K . We show that if e < p−1, then every crystalline representation of π1étSpecR1 ]) p with Hodge–Tate weights in [0, 1] arises from a p-divisible group over R.en_US
dc.language.isoenen_US
dc.publisherMathematical Sciences Publishersen_US
dc.rights© 2020 Mathematical Sciences Publishers.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subjectCrystalline representationen_US
dc.subjectP-divisible groupen_US
dc.subjectRelative p-adic Hodge theoryen_US
dc.titleRelative crystalline representations and p-divisible groups in the small ramification caseen_US
dc.typeArticleen_US
dc.identifier.eissn1944-7833
dc.contributor.departmentUniversity of Arizonaen_US
dc.identifier.journalAlgebra and Number Theoryen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleAlgebra & Number Theory
dc.source.volume14
dc.source.issue10
dc.source.beginpage2773
dc.source.endpage2789
refterms.dateFOA2021-05-05T23:57:00Z


Files in this item

Thumbnail
Name:
ant-v14-n10-p07-s.pdf
Size:
1.298Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record