Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4.0
Author
Dunne, J. P.Bociu, I.
Bronselaer, B.
Guo, H.
John, J. G.
Krasting, J. P.
Stock, C. A.
Winton, M.
Zadeh, N.
Affiliation
Univ Arizona, Dept GeosciIssue Date
2020-08-18
Metadata
Show full item recordPublisher
AMER GEOPHYSICAL UNIONCitation
Dunne, J. P., Bociu, I., Bronselaer, B., Guo, H., John, J. G., Krasting, J. P., ... & Zadeh, N. (2020). Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4. 0. Journal of Advances in Modeling Earth Systems, 12(10), e2019MS002008.Rights
© 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Simulation of coupled carbon-climate requires representation of ocean carbon cycling, but the computational burden of simulating the dozens of prognostic tracers in state-of-the-art biogeochemistry ecosystem models can be prohibitive. We describe a six-tracer biogeochemistry module of steady-state phytoplankton and zooplankton dynamics in Biogeochemistry with Light, Iron, Nutrients and Gas (BLING version 2) with particular emphasis on enhancements relative to the previous version and evaluate its implementation in Geophysical Fluid Dynamics Laboratory's (GFDL) fourth-generation climate model (CM4.0) with 1/4 degrees ocean. Major geographical and vertical patterns in chlorophyll, phosphorus, alkalinity, inorganic and organic carbon, and oxygen are well represented. Major biases in BLINGv2 include overly intensified production in high-productivity regions at the expense of productivity in the oligotrophic oceans, overly zonal structure in tropical phosphorus, and intensified hypoxia in the eastern ocean basins as is typical in climate models. Overall, while BLINGv2 structural limitations prevent sophisticated application to plankton physiology, ecology, or biodiversity, its ability to represent major organic, inorganic, and solubility pumps makes it suitable for many coupled carbon-climate and biogeochemistry studies including eddy interactions in the ocean interior. We further overview the biogeochemistry and circulation mechanisms that shape carbon uptake over the historical period. As an initial analysis of model historical and idealized response, we show that CM4.0 takes up slightly more anthropogenic carbon than previous models in part due to enhanced ventilation in the absence of an eddy parameterization. The CM4.0 biogeochemistry response to CO2 doubling highlights a mix of large declines and moderate increases consistent with previous models.Note
Open access journalISSN
1942-2466EISSN
1942-2466Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1029/2019ms002008
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.