Show simple item record

dc.contributor.authorDunne, J. P.
dc.contributor.authorBociu, I.
dc.contributor.authorBronselaer, B.
dc.contributor.authorGuo, H.
dc.contributor.authorJohn, J. G.
dc.contributor.authorKrasting, J. P.
dc.contributor.authorStock, C. A.
dc.contributor.authorWinton, M.
dc.contributor.authorZadeh, N.
dc.date.accessioned2021-05-06T01:16:26Z
dc.date.available2021-05-06T01:16:26Z
dc.date.issued2020-08-18
dc.identifier.citationDunne, J. P., Bociu, I., Bronselaer, B., Guo, H., John, J. G., Krasting, J. P., ... & Zadeh, N. (2020). Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4. 0. Journal of Advances in Modeling Earth Systems, 12(10), e2019MS002008.en_US
dc.identifier.issn1942-2466
dc.identifier.doi10.1029/2019ms002008
dc.identifier.urihttp://hdl.handle.net/10150/658198
dc.description.abstractSimulation of coupled carbon-climate requires representation of ocean carbon cycling, but the computational burden of simulating the dozens of prognostic tracers in state-of-the-art biogeochemistry ecosystem models can be prohibitive. We describe a six-tracer biogeochemistry module of steady-state phytoplankton and zooplankton dynamics in Biogeochemistry with Light, Iron, Nutrients and Gas (BLING version 2) with particular emphasis on enhancements relative to the previous version and evaluate its implementation in Geophysical Fluid Dynamics Laboratory's (GFDL) fourth-generation climate model (CM4.0) with 1/4 degrees ocean. Major geographical and vertical patterns in chlorophyll, phosphorus, alkalinity, inorganic and organic carbon, and oxygen are well represented. Major biases in BLINGv2 include overly intensified production in high-productivity regions at the expense of productivity in the oligotrophic oceans, overly zonal structure in tropical phosphorus, and intensified hypoxia in the eastern ocean basins as is typical in climate models. Overall, while BLINGv2 structural limitations prevent sophisticated application to plankton physiology, ecology, or biodiversity, its ability to represent major organic, inorganic, and solubility pumps makes it suitable for many coupled carbon-climate and biogeochemistry studies including eddy interactions in the ocean interior. We further overview the biogeochemistry and circulation mechanisms that shape carbon uptake over the historical period. As an initial analysis of model historical and idealized response, we show that CM4.0 takes up slightly more anthropogenic carbon than previous models in part due to enhanced ventilation in the absence of an eddy parameterization. The CM4.0 biogeochemistry response to CO2 doubling highlights a mix of large declines and moderate increases consistent with previous models.en_US
dc.language.isoenen_US
dc.publisherAMER GEOPHYSICAL UNIONen_US
dc.rights© 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.en_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.subjectcarbon cycle modelen_US
dc.subjectocean biogeochemistryen_US
dc.titleSimple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4.0en_US
dc.typeArticleen_US
dc.identifier.eissn1942-2466
dc.contributor.departmentUniv Arizona, Dept Geoscien_US
dc.identifier.journalJOURNAL OF ADVANCES IN MODELING EARTH SYSTEMSen_US
dc.description.noteOpen access journalen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleJournal of Advances in Modeling Earth Systems
dc.source.volume12
dc.source.issue10
refterms.dateFOA2021-05-06T01:16:28Z


Files in this item

Thumbnail
Name:
2019MS002008.pdf
Size:
16.38Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

© 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.
Except where otherwise noted, this item's license is described as © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.