• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Universe at z > 10: predictions for JWST from the universemachine DR1

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    staa3164.pdf
    Size:
    2.044Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Behroozi, Peter
    Conroy, Charlie cc
    Wechsler, Risa H
    Hearin, Andrew
    Williams, Christina C
    Moster, Benjamin P
    Yung, L Y Aaron
    Somerville, Rachel S
    Gottlöber, Stefan
    Yepes, Gustavo
    Endsley, Ryan
    Show allShow less
    Affiliation
    Department of Astronomy and Steward Observatory, University of Arizona
    Issue Date
    2020-10-14
    Keywords
    galaxies: abundances
    galaxies: evolution
    
    Metadata
    Show full item record
    Publisher
    Oxford University Press
    Citation
    Behroozi, P., Conroy, C., Wechsler, R. H., Hearin, A., Williams, C. C., Moster, B. P., ... & Endsley, R. (2020). The Universe at z > 10: predictions for JWST from the universemachine DR1. Monthly Notices of the Royal Astronomical Society, 499(4), 5702-5718.
    Journal
    Monthly Notices of the Royal Astronomical Society
    Rights
    © 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0-15. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy-halo relationships, and galaxy-galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at z < 10. We predict that Cycle 1 JWST surveys will very likely detect galaxies with M∗ > 107 M· and/or M1500 < -17 out to at least z ∼13.5. Number density uncertainties at z > 12 expand dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits (M∗ < 107 M· or M1500 > -17). For reionization models, extrapolating luminosity functions with a constant faint-end slope from M1500 = -17 down to M1500 = -12 gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to z ∼12. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and light-cones for common fields are available online. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.
    ISSN
    0035-8711
    EISSN
    1365-2966
    DOI
    10.1093/mnras/staa3164
    Version
    Final published version
    Sponsors
    Ministerio de Ciencia, Innovación y Universidades
    ae974a485f413a2113503eed53cd6c53
    10.1093/mnras/staa3164
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.