Show simple item record

dc.contributor.authorMansfield, Megan
dc.contributor.authorSchlawin, Everett
dc.contributor.authorLustig-Yaeger, Jacob
dc.contributor.authorAdams, Arthur D
dc.contributor.authorRauscher, Emily
dc.contributor.authorArcangeli, Jacob
dc.contributor.authorFeng, Y Katherina
dc.contributor.authorGupta, Prashansa
dc.contributor.authorKeating, Dylan
dc.contributor.authorStevenson, Kevin B
dc.contributor.authorBeatty, Thomas G
dc.date.accessioned2021-05-08T00:37:31Z
dc.date.available2021-05-08T00:37:31Z
dc.date.issued2020-10-15
dc.identifier.citationMansfield, M., Schlawin, E., Lustig-Yaeger, J., Adams, A. D., Rauscher, E., Arcangeli, J., ... & Beatty, T. G. (2020). Eigenspectra: a framework for identifying spectra from 3D eclipse mapping. Monthly Notices of the Royal Astronomical Society, 499(4), 5151-5162.en_US
dc.identifier.issn0035-8711
dc.identifier.doi10.1093/mnras/staa3179
dc.identifier.urihttp://hdl.handle.net/10150/658234
dc.description.abstractPlanetary atmospheres are inherently 3D objects that can have strong gradients in latitude, longitude, and altitude. Secondary eclipse mapping is a powerful way to map the 3D distribution of the atmosphere, but the data can have large correlations and errors in the presence of photon and instrument noise. We develop a technique to mitigate the large uncertainties of eclipse maps by identifying a small number of dominant spectra to make them more tractable for individual analysis via atmospheric retrieval. We use the eigencurves method to infer a multiwavelength map of a planet from spectroscopic secondary eclipse light curves. We then apply a clustering algorithm to the planet map to identify several regions with similar emergent spectra. We combine the similar spectra together to construct an 'eigenspectrum' for each distinct region on the planetary map. We demonstrate how this approach could be used to isolate hot from cold regions and/or regions with different chemical compositions in observations of hot Jupiters with the James Webb Space Telescope (JWST). We find that our method struggles to identify sharp edges in maps with sudden discontinuities, but generally can be used as a first step before a more physically motivated modelling approach to determine the primary features observed on the planet. © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.en_US
dc.description.sponsorshipNational Aeronautics and Space Administrationen_US
dc.language.isoenen_US
dc.publisherOxford University Pressen_US
dc.rights© 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectmethods: data analysisen_US
dc.subjectplanets and satellites: atmospheresen_US
dc.subjectplanets and satellites: gaseous planetsen_US
dc.titleEigenspectra: a framework for identifying spectra from 3D eclipse mappingen_US
dc.typeArticleen_US
dc.identifier.eissn1365-2966
dc.contributor.departmentDepartment of Astronomy and Steward Observatory, University of Arizonaen_US
dc.identifier.journalMonthly Notices of the Royal Astronomical Societyen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal published versionen_US
dc.source.journaltitleMonthly Notices of the Royal Astronomical Society
dc.source.volume499
dc.source.issue4
dc.source.beginpage5151
dc.source.endpage5162
refterms.dateFOA2021-05-08T00:37:32Z


Files in this item

Thumbnail
Name:
staa3179.pdf
Size:
4.237Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record