Biparental contributions of the H2A.B histone variant control embryonic development in mice
Name:
journal.pbio.3001001.pdf
Size:
2.149Mb
Format:
PDF
Description:
Final Published Version
Author
Molaro, A.Wood, A.J.
Janssens, D.
Kindelay, S.M.
Eickbush, M.T.
Wu, S.
Singh, P.
Muller, C.H.
Henikoff, S.
Malik, H.S.
Affiliation
Department of Cellular and Molecular Medicine, University of ArizonaIssue Date
2020
Metadata
Show full item recordPublisher
Public Library of ScienceCitation
Molaro A, Wood AJ, Janssens D, Kindelay SM, Eickbush MT, Wu S, et al. (2020) Biparental contributions of the H2A.B histone variant control embryonic development in mice. PLoS Biol 18(12): e3001001.Journal
PLoS BiologyRights
Copyright © 2020 Molaro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Histone variants expand chromatin functions in eukaryote genomes. H2A.B genes are testis-expressed short histone H2A variants that arose in placental mammals. Their biological functions remain largely unknown. To investigate their function, we generated a knockout (KO) model that disrupts all 3 H2A.B genes in mice. We show that H2A.B KO males have globally altered chromatin structure in postmeiotic germ cells. Yet, they do not show impaired spermatogenesis or testis function. Instead, we find that H2A.B plays a crucial role postfertilization. Crosses between H2A.B KO males and females yield embryos with lower viability and reduced size. Using a series of genetic crosses that separate parental and zygotic contributions, we show that the H2A.B status of both the father and mother, but not of the zygote, affects embryonic viability and growth during gestation. We conclude that H2A.B is a novel parental-effect gene, establishing a role for short H2A histone variants in mammalian development. We posit that parental antagonism over embryonic growth drove the origin and ongoing diversification of short histone H2A variants in placental mammals. Copyright: © 2020 Molaro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Note
Open access journalISSN
1544-9173PubMed ID
33362208Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1371/journal.pbio.3001001
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2020 Molaro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License.
Related articles
- Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals.
- Authors: Molaro A, Young JM, Malik HS
- Issue date: 2018 Apr
- A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B.
- Authors: Soboleva TA, Parker BJ, Nekrasov M, Hart-Smith G, Tay YJ, Tng WQ, Wilkins M, Ryan D, Tremethick DJ
- Issue date: 2017 Feb
- Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation.
- Authors: Bošković A, Bender A, Gall L, Ziegler-Birling C, Beaujean N, Torres-Padilla ME
- Issue date: 2012 Jul
- Histone variant H2A.Z regulates zygotic genome activation.
- Authors: Ibarra-Morales D, Rauer M, Quarato P, Rabbani L, Zenk F, Schulte-Sasse M, Cardamone F, Gomez-Auli A, Cecere G, Iovino N
- Issue date: 2021 Dec 1
- Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells.
- Authors: Barral S, Morozumi Y, Tanaka H, Montellier E, Govin J, de Dieuleveult M, Charbonnier G, Couté Y, Puthier D, Buchou T, Boussouar F, Urahama T, Fenaille F, Curtet S, Héry P, Fernandez-Nunez N, Shiota H, Gérard M, Rousseaux S, Kurumizaka H, Khochbin S
- Issue date: 2017 Apr 6