• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Electron heating and cooling in hypersonic flows

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    5.0046197.pdf
    Size:
    2.340Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Parent, B.
    Affiliation
    Department of Aerospace and Mechanical Engineering
    Issue Date
    2021
    
    Metadata
    Show full item record
    Publisher
    American Institute of Physics Inc.
    Citation
    Parent, B. (2021). Electron heating and cooling in hypersonic flows. Physics of Fluids, 33(4).
    Journal
    Physics of Fluids
    Rights
    Copyright © 2021 Author(s). Published under license by AIP Publishing.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Using recently developed advanced numerical methods for plasma flows and sheaths, the first detailed study of electron cooling and heating taking place within hypersonic non-neutral flows is presented here. The numerical simulations fully couple the Navier-Stokes equations for the neutrals to the drift-diffusion model for the electrons and ions and include a 11-species finite-rate chemical solver along with a transport equation for the electron temperature in non-equilibrium. Results for Mach 18 airflow around a wedge with a sharp leading edge show that at low flight dynamic pressure the electron temperature remains close to the freestream temperature in the stagnation region. Such is attributed to the product of the electric field and the electron current being dominantly negative within the plasma sheaths and acting as an electron energy sink. This cooling effect leads to a significant portion of the flow downstream of the shock exhibiting electron temperatures much lower than expected. This study is the first to show a large impact of the non-neutral plasma sheaths on the post-shock electron temperature. This study also shows that the common approach to set the electron temperature equal to the vibrational temperature can result in the electron temperature being over-predicted by one order of magnitude or more in hypersonic flows. © 2021 Author(s).
    Note
    12 month embargo; published online: 16 April 2021
    ISSN
    1070-6631
    DOI
    10.1063/5.0046197
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1063/5.0046197
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.