• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fully Implicit Dynamic Pore-Network Modeling of Two-Phase Flow and Phase Change in Porous Media

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    2020WR028510.pdf
    Size:
    6.736Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Chen, S.
    Qin, C.
    Guo, B.
    Affiliation
    Department of Hydrology and Atmospheric Sciences, University of Arizona
    Department of Hydrology and Atmospheric Sciences, University of Arizona
    Issue Date
    2020
    Keywords
    compositional flow
    compressible flow
    phase behavior
    pore scale
    pore-network modeling
    two-phase flow
    
    Metadata
    Show full item record
    Publisher
    Blackwell Publishing Ltd
    Citation
    Chen, S., Qin, C., & Guo, B. (2020). Fully implicit dynamic pore-network modeling of two-phase flow and phase change in porous media. Water Resources Research, 56,e2020WR028510.
    Journal
    Water Resources Research
    Rights
    Copyright © 2020 American Geophysical Union. All Rights Reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Dynamic pore-network model (PNM) has been widely used to model pore-scale two-phase flow. Numerical algorithms commonly used for dynamic PNM including IMPES (implicit pressure explicit saturation) and IMP-SIMS (implicit pressure semi-implicit saturation) can be numerically unstable or inaccurate for challenging flow regimes such as low capillary number (Ca) flow and unfavorable displacements. We perform comprehensive analyses of IMPES and IMP-SIMS for a wide range of flow regimes under drainage conditions and develop a novel fully implicit (FI) algorithm to address their limitations. Our simulations show the following: (1) While IMPES was reported to be numerically unstable for low Ca flow, using a smoothed local pore-body capillary pressure curve appears to produce stable simulations. (2) Due to an approximation for the capillary driving force, IMP-SIMS can deviate from quasi-static solutions at equilibrium states especially in heterogeneous networks. (3) Both IMPES and IMP-SIMS introduce mass conservation errors. The errors are small for networks with cubic pore bodies (less than 1.4% for IMPES and 1.2% for IMP-SIMS). They become much greater for networks with square-tube pore bodies (up to 45% for IMPES and 46% for IMP-SIMS). Conversely, the new FI algorithm is numerically stable and mass conservative regardless of the flow regimes and pore geometries. It also precisely recovers the quasi-static solutions at equilibrium states. The FI framework has been extended to include compressible two-phase flow, multicomponent transport, and phase change dynamics. Example simulations of two-phase displacements accounting for phase change show that evaporation and condensation can suppress fingering patterns generated during invasion. ©2020. American Geophysical Union. All Rights Reserved.
    Note
    6 month embargo; first published: 26 October 2020
    ISSN
    0043-1397
    DOI
    10.1029/2020WR028510
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1029/2020WR028510
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.