• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The effect of anthropogenic aerosols on the aleutian low

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    [15200442 - Journal of Climate] ...
    Size:
    4.050Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Dow, W.J.
    Maycock, A.C.
    Lofverstrom, M.
    Smith, C.J.
    Affiliation
    Department of Geosciences, University of Arizona
    Issue Date
    2021
    Keywords
    Aerosols/particulates
    Model comparison
    Pacific decadal oscillation
    Primitive equations model
    Rossby waves
    
    Metadata
    Show full item record
    Publisher
    American Meteorological Society
    Citation
    Dow, W. J., Maycock, A. C., Lofverstrom, M., & Smith, C. J. (2021). The effect of anthropogenic aerosols on the Aleutian Low. Journal of Climate, 34(5), 1725-1741.
    Journal
    Journal of Climate
    Rights
    Copyright © 2021 American Meteorological Society.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Past studies have suggested that regional trends in anthropogenic aerosols can influence the Pacific decadal oscillation (PDO) through modulation of the Aleutian low. However, the robustness of this connection is debated. This study analyzes changes to the Aleutian low in an ensemble of climate models forced with large, idealized global and regional black carbon (BC) and sulfate aerosol perturbations. To isolate the role of ocean feedbacks, the experiments are performed with an interactive ocean and with prescribed sea surface temperatures. The results show a robust weakening of the Aleutian low forced by a global tenfold increase in BC in both experiment configurations. A linearized steady-state primitive equation model is forced with diabatic heating anomalies to investigate the mechanisms through which heating from BC emissions influences the Aleutian low. The heating from BC absorption over India and East Asia generates Rossby wave trains that propagate into the North Pacific sector, forming an upper-tropospheric ridge. Sources of BC outside of East Asia enhance the weakening of the Aleutian low. The responses to a global fivefold and regional tenfold increase in sulfate aerosols over Asia show poor consistency across climate models, with a multimodel mean response that does not project strongly onto the Aleutian low. These findings for a large, idealized step increase in regional sulfate aerosol differ from previous studies that suggest the transient increase in sulfate aerosols over Asia during the early twenty-first century weakened the Aleutian low and induced a transition to a negative PDO phase. © 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
    Note
    6 month embargo; published online: 03 February 2021
    ISSN
    0894-8755
    DOI
    10.1175/JCLI-D-20-0423.1
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1175/JCLI-D-20-0423.1
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.