• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    GhostImage: Remote perception attacks against camera-based image classification systems

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    raid20-man.pdf
    Size:
    860.9Kb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Man, Y.
    Li, M.
    Gerdes, R.
    Affiliation
    University of Arizona
    Issue Date
    2020
    
    Metadata
    Show full item record
    Publisher
    USENIX Association
    Citation
    Man, Y., Li, M., & Gerdes, R. (2020). GhostImage: Remote Perception Attacks against Camera-based Image Classification Systems. In 23rd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID} 2020) (pp. 317-332).
    Journal
    RAID 2020 Proceedings - 23rd International Symposium on Research in Attacks, Intrusions and Defenses
    Rights
    Copyright © The Author(s).
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    In vision-based object classification systems imaging sensors perceive the environment and then objects are detected and classified for decision-making purposes; e.g., to maneuver an automated vehicle around an obstacle or to raise an alarm to indicate the presence of an intruder in surveillance settings. In this work we demonstrate how the perception domain can be remotely and unobtrusively exploited to enable an attacker to create spurious objects or alter an existing object. An automated system relying on a detection/classification framework subject to our attack could be made to undertake actions with catastrophic results due to attacker-induced misperception. We focus on camera-based systems and show that it is possible to remotely project adversarial patterns into camera systems by exploiting two common effects in optical imaging systems, viz., lens flare/ghost effects and auto-exposure control. To improve the robustness of the attack to channel effects, we generate optimal patterns by integrating adversarial machine learning techniques with a trained end-to-end channel model. We experimentally demonstrate our attacks using a low-cost projector, on three different image datasets, in indoor and outdoor environments, and with three different cameras. Experimental results show that, depending on the projector-camera distance, attack success rates can reach as high as 100% and under targeted conditions. © 2020 by The USENIX Association. All Rights Reserved.
    Note
    Immediate access
    ISBN
    9781940000000
    Version
    Final published version
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.