Maritime Cloud and Drizzle Microphysical Properties Retrieved From Ship-Based Observations During MAGIC
Affiliation
Department of Hydrology and Atmospheric Sciences, University of ArizonaIssue Date
2021
Metadata
Show full item recordPublisher
Blackwell Publishing LtdCitation
Brendecke, J., Dong, X., Xi, B., & Wu, P. (2021). Maritime Cloud and Drizzle Microphysical Properties Retrieved From Ship-Based Observations During MAGIC. Earth and Space Science, 8(5).Journal
Earth and Space ScienceRights
© 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign provided a wealth of information looking at the stratocumulus to cumulus transition (SCT) over the Eastern-North Pacific (ENP), however, the lack of cloud in situ measurements gave limited information. Using the observations of Marine W-band ARM cloud radar, ceilometer, and three-channel microwave radiometer onboard the ship, we retrieve the single-layer, low-level cloud-droplet effective radius and drizzle median radius (rc and rm,d), number concentration (Nc and Nd), and liquid water content (LWCc and LWCd) using the methods in Wu et al. (2020, https://doi.org/10.1029/2019JD032205). Based on the results during MAGIC, we found that both cloud base and top heights increase approximately 0.75 km from Los Angeles (LA) until cloud breakup (CB) before leveling off. Low cloud fractions (CFs) ranged from ∼85% halfway between LA and CB to ∼20% near Hawaii. Retrieved rc values decreased approximately 2 μm from peak CF to Hawaii while rm,d increased more than 20 μm over the same path. Mean values of rc, rm,d, Nc, Nd, LWCc, and LWCd during MAGIC are 12.1 μm, 55.8 μm, 97.9 cm−3, 0.09 cm−3, 0.40 g m−3, and 0.05 g m−3, respectively. Compared to the mean values over the Azores in Wu et al. (2020, https://doi.org/10.1029/2019JD032205), the mean cloud and drizzle microphysical properties during MAGIC, except LWCd which is roughly equal, are greater due to higher liquid water path and warmer sea surface temperature. This information allows for a better understanding of the SCT over the ENP and can be used to better improve model simulations. © 2021. The Authors.Note
Open acess articleISSN
2333-5084Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1029/2020EA001588
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License.

