Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at √s = 13 TeV
Name:
Aad2021_Article_SearchForDoubl ...
Size:
2.112Mb
Format:
PDF
Description:
Final Published Version
Author
ATLAS CollaborationAffiliation
Department of Physics, University of ArizonaIssue Date
2021
Metadata
Show full item recordCitation
Aad, G., Abbott, B., Abbott, D. C., Abed Abud, A., Abeling, K., Abhayasinghe, D. K., Abidi, S. H., AbouZeid, O. S., Abraham, N. L., Abramowicz, H., Abreu, H., Abulaiti, Y., Acharya, B. S., Achkar, B., Adam, L., Adam Bourdarios, C., Adamczyk, L., Adamek, L., Adelman, J., … The ATLAS collaboration. (2021). Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at √s = 13 TeV. Journal of High Energy Physics, 2021(6).Journal
Journal of High Energy PhysicsRights
Copyright © CERN, for the benefit of the ATLAS Collaboration. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
A search for charged Higgs bosons decaying into W±W± or W±Z bosons is performed, involving experimental signatures with two leptons of the same charge, or three or four leptons with a variety of charge combinations, missing transverse momentum and jets. A data sample of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb−1. The search is guided by a type-II seesaw model that extends the scalar sector of the Standard Model with a scalar triplet, leading to a phenomenology that includes doubly and singly charged Higgs bosons. Two scenarios are explored, corresponding to the pair production of doubly charged H±± bosons, or the associated production of a doubly charged H±± boson and a singly charged H± boson. No significant deviations from the Standard Model predictions are observed. H±± bosons are excluded at 95% confidence level up to 350 GeV and 230 GeV for the pair and associated production modes, respectively. [Figure not available: see fulltext.] © 2021, The Author(s).Note
Open access journalISSN
1029-8479Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1007/JHEP06(2021)146
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © CERN, for the benefit of the ATLAS Collaboration. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0).

