• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Near-field coupling of absorbing material to subwavelength cavities

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    ome-11-8-2576.pdf
    Size:
    4.797Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Gemar, H.
    Yetzbacher, M.K.
    Driggers, R.G.
    Renshaw, C.K.
    Affiliation
    Wyant College of Optical Sciences, University of Arizona
    Issue Date
    2021
    
    Metadata
    Show full item record
    Publisher
    The Optical Society
    Citation
    Gemar, H., Yetzbacher, M. K., Driggers, R. G., & Renshaw, C. K. (2021). Near-field coupling of absorbing material to subwavelength cavities. Optical Materials Express, 11(8), 2576–2585.
    Journal
    Optical Materials Express
    Rights
    Copyright © 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    In conjunction with our previous work on spectral transmission dependence on geometric parameters for subwavelength slits, we have investigated the optical behavior with the inclusion of an absorber on the extraordinary optical transmission of sliver slits resonant in the mid-wave infrared (MWIR). The placement of an absorbing layer causes a dramatic change to the dielectric environment of the subwavelength slit causing the cavity to become energetically leaky. We have found this broadens the spectral response of the cavity by increasing the imaginary component of the effective cavity index, reducing the cavity quality by a factor of more than seven. To mitigate this undesired effect, we have found that partially decoupling the absorber with a thin isolating layer helps restore the slit's narrow spectral response and we explore the dependence of optical properties on the isolating layer's depth. The optimum thickness of a silicon dioxide isolation layer for best quantum efficiency (Q.E.) was found to be 100 nm with a maximum Q.E. of 37.5%. This is more than double the Q.E. of the directly coupled absorber and the cavity Q increase is of the same order, with a corresponding narrowing of the resonance bandwidth. In addition, we explore the effect on the cavity of changing the dielectric environment at the input of the slit to improve the resonance properties in the propagation direction improving the Q by 20% and improving the Q.E. to 40.2%. © 2021 Optical Society of America.
    Note
    Open access journal
    ISSN
    2159-3930
    DOI
    10.1364/OME.431744
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1364/OME.431744
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.