• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling Heat and Carbon in the Argentine Basin

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_19029_sip1_m.pdf
    Size:
    28.06Mb
    Format:
    PDF
    Download
    Author
    Swierczek, Stan
    Issue Date
    2021
    Keywords
    Air-Sea Exchanges
    Biogeochemical Modeling
    Carbon Cycle
    Numerical Methods
    Ocean Modeling
    Oceanography
    Advisor
    Russell, Joellen L.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    We construct regional ocean circulation models with biogeochemistry with eddy-permitting (1/3 degree) to eddy-resolving (1/12 degree) resolutions to investigate heat and carbon dynamics in the region and determine the effect of model resolution on these dynamics. Simulations of the Argentine Basin have large uncertainties associated with quantities such as air-sea exchanges of heat and carbon in current generation climate models and ocean reanalysis products. This is due to the complex topography, profound undersampling, and strong currents and mixing of subpolar and subtropical water masses in the basin. Because mixing of water masses is important here, model resolution is hypothesized to play an important role in estimating ocean quantities and determining overall budgets. The implemented models are evaluated for fidelity by comparing output to a variety of observational datasets and reanalysis products. We then quantify the effect of resolution on model upper ocean heat and carbon transport and the associated air-sea exchanges and determine that higher resolution models have increased upward heat transport and surface heat fluxes, but no significant effect is observed for carbon. Then, the forecast horizon for ocean surface quantities of temperature and carbon is probed by using these same regional models at two resolutions and designing a series of wind stress perturbation experiments. We calculate the responses of the surface temperature and dissolved inorganic carbon and estimate the forecasting capability of each resolution. We show that responses in the 1/12 degree model are approximately linear and decay for 1-2 weeks. For the 1/3 degree model this increases to 4-6 weeks, but it is only consistent with the 1/12 degree forecast for about one week which shows the diminished potential predictive skill of the coarser model.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Applied Mathematics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.