• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    A data assimilation approach to last millennium temperature field reconstruction using a limited high-sensitivity proxy network

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    [15200442 - Journal of Climate] ...
    Size:
    11.01Mb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    King, J.M.
    Anchukaitis, K.J.
    Tierney, J.E.
    Hakim, G.J.
    Emile-Geay, J.
    Zhu, F.
    Wilson, R.
    Affiliation
    Department of Geosciences, University of Arizona
    Laboratory of Tree-Ring Research, University of Arizona
    School of Geography, Development, and Environment, University of Arizona
    Issue Date
    2021
    Keywords
    Data assimilation
    Kalman filters
    Northern hemisphere
    Paleoclimate
    Surface temperature
    Tree rings
    
    Metadata
    Show full item record
    Publisher
    American Meteorological Society
    Citation
    King, J. M., Anchukaitis, K. J., Tierney, J. E., Hakim, G. J., Emile-Geay, J., Zhu, F., & Wilson, R. (2021). A data assimilation approach to last millennium temperature field reconstruction using a limited high-sensitivity proxy network. Journal of Climate, 34(17), 7091–7111.
    Journal
    Journal of Climate
    Rights
    Copyright © 2021 American Meteorological Society.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    We use the Northern Hemisphere Tree-Ring Network Development (NTREND) tree-ring database to examine the effects of using a small, highly sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudoproxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on point-by-point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates, and these identify tree-line North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multimodel mean reconstruction to five existing paleotemperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks. © 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).
    Note
    6 month embargo; published online: 27 July 2021
    ISSN
    0894-8755
    DOI
    10.1175/JCLI-D-20-0661.1
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1175/JCLI-D-20-0661.1
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.