Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge
Name:
s41598-021-95676-2.pdf
Size:
1.956Mb
Format:
PDF
Description:
Final Published Version
Publisher
Nature ResearchCitation
Charvet, S., Kim, E., Subramaniam, A., Montoya, J., & Duhamel, S. (2021). Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge. Scientific Reports, 11(1).Journal
Scientific ReportsRights
Copyright © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Small pigmented eukaryotes (⩽ 5 µm) are an important, but overlooked component of global marine phytoplankton. The Amazon River plume delivers nutrients into the oligotrophic western tropical North Atlantic, shades the deeper waters, and drives the structure of microphytoplankton (> 20 µm) communities. For small pigmented eukaryotes, however, diversity and distribution in the region remain unknown, despite their significant contribution to open ocean primary production and other biogeochemical processes. To investigate how habitats created by the Amazon river plume shape small pigmented eukaryote communities, we used high-throughput sequencing of the 18S ribosomal RNA genes from up to five distinct small pigmented eukaryote cell populations, identified and sorted by flow cytometry. Small pigmented eukaryotes dominated small phytoplankton biomass across all habitat types, but the population abundances varied among stations resulting in a random distribution. Small pigmented eukaryote communities were consistently dominated by Chloropicophyceae (0.8–2 µm) and Bacillariophyceae (0.8–3.5 µm), accompanied by MOCH-5 at the surface or by Dinophyceae at the chlorophyll maximum. Taxonomic composition only displayed differences in the old plume core and at one of the plume margin stations. Such results reflect the dynamic interactions of the plume and offshore oceanic waters and suggest that the resident small pigmented eukaryote diversity was not strongly affected by habitat types at this time of the year. © 2021, The Author(s).Note
Open access journalISSN
2045-2322Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1038/s41598-021-95676-2
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License.