• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Direct imaging and spectroscopy of exoplanets with the ELT/HARMONI high-contrast module

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    aa40479-21.pdf
    Size:
    915.5Kb
    Format:
    PDF
    Description:
    Final Published Version
    Download
    Author
    Houllé, M.
    Vigan, A.
    Carlotti, A.
    Choquet, É.
    Cantalloube, F.
    Phillips, M.W.
    Sauvage, J.-F.
    Schwartz, N.
    Otten, G.P.P.L.
    Baraffe, I.
    Emsenhuber, A.
    Mordasini, C.
    Show allShow less
    Affiliation
    Lunar and Planetary Laboratory, University of Arizona
    Issue Date
    2021
    Keywords
    Infrared: planetary systems
    Instrumentation: high angular resolution
    Planets and satellites: detection
    Techniques: imaging spectroscopy
    
    Metadata
    Show full item record
    Publisher
    EDP Sciences
    Citation
    Houllé, M., Vigan, A., Carlotti, A., Choquet, É., Cantalloube, F., Phillips, M. W., Sauvage, J.-F., Schwartz, N., Otten, G. P. P. L., Baraffe, I., Emsenhuber, A., & Mordasini, C. (2021). Direct imaging and spectroscopy of exoplanets with the ELT/HARMONI high-contrast module. Astronomy and Astrophysics, 652.
    Journal
    Astronomy and Astrophysics
    Rights
    Copyright © M. Houllé et al. 2021.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Combining high-contrast imaging with medium-resolution spectroscopy has been shown to significantly boost the direct detection of exoplanets. HARMONI, one of the first-light instruments to be mounted on ESO's future extremely large telescope (ELT), will be equipped with a single-conjugated adaptive optics system to reach the diffraction limit of the ELT in the H and K bands, a high-contrast module dedicated to exoplanet imaging, and a medium-resolution (up to R = 17 000) optical and near-infrared integral field spectrograph. When combined, these systems will provide unprecedented contrast limits at separations between 50 and 400 mas. This paper is aimed at estimating the capabilities of the HARMONI high-contrast module for the direct detection of young giant exoplanets. We use an end-to-end model of the instrument to simulate high-contrast observations performed with HARMONI, based on realistic observing scenarios and conditions. We then analyze these data with the so-called "molecule mapping"technique combined with a matched-filter approach in order to disentangle companions from the host star and tellurics and to increase the signal-to-noise ratio (S/N) of the planetary signal. We detected planets above 5σ at contrasts up to 16 mag and separations down to 75 mas in several spectral configurations of the instrument. We show that molecule mapping allows for the detection of companions up to 2.5 mag fainter compared to state-of-the-art high-contrast imaging techniques based on angular differential imaging. We also demonstrate that the performance is not strongly affected by the spectral type of the host star and we show that we are able to reach close sensitivities for the best three quartiles of observing conditions at Armazones, which means that HARMONI could be used in near-critical observations during 60 to 70% of telescope time at the ELT. Finally, we simulated planets from population synthesis models to further explore the parameter space that HARMONI and its high-contrast module will open up and compare this to the current high-contrast instrumentation. © M. Houllé et al. 2021.
    Note
    Immediate access
    ISSN
    0004-6361
    DOI
    10.1051/0004-6361/202140479
    Version
    Final published version
    ae974a485f413a2113503eed53cd6c53
    10.1051/0004-6361/202140479
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.