Reducing ground-based astrometric errors with gaia and gaussian processes
Name:
Fortino_2021_AJ_162_106.pdf
Size:
1.525Mb
Format:
PDF
Description:
Final Published Version
Author
Fortino, W.F.Bernstein, G.M.
Bernardinelli, P.H.
Aguena, M.
Allam, S.
Annis, J.

Bacon, D.
Bechtol, K.
Bhargava, S.
Brooks, D.
Burke, D.L.
Carretero, J.
Choi, A.
Costanzi, M.
da Costa, L.N.
Pereira, M.E.S.
De Vicente, J.
Desai, S.
Doel, P.
Drlica-Wagner, A.
Eckert, K.
Eifler, T.F.
Evrard, A.E.
Ferrero, I.
Frieman, J.
García-Bellido, J.
Gaztañaga, E.
Gerdes, D.W.
Gruendl, R.A.
Gschwend, J.
Gutierrez, G.
Hartley, W.G.
Hinton, S.R.
Hollowood, D.L.
Honscheid, K.
James, D.J.
Jarvis, M.
Kent, S.
Kuehn, K.
Kuropatkin, N.
Maia, M.A.G.
Marshall, J.L.
Menanteau, F.
Miquel, R.
Morgan, R.
Myles, J.
Ogando, R.L.C.
Palmese, A.
Paz-Chinchón, F.
Plazas, A.A.
Roodman, A.
Rykoff, E.S.
Sanchez, E.
Santiago, B.
Scarpine, V.
Schubnell, M.
Serrano, S.
Sevilla-Noarbe, I.
Smith, M.
Suchyta, E.
Tarle, G.

To, C.
Tucker, D.L.
Varga, T.N.
Walker, A.R.
Weller, J.
Wester, W.
Affiliation
Department of Astronomy, Steward Observatory, University of ArizonaIssue Date
2021
Metadata
Show full item recordPublisher
American Astronomical SocietyCitation
Fortino, W. F., Bernstein, G. M., Bernardinelli, P. H., Aguena, M., Allam, S., Annis, J., Bacon, D., Bechtol, K., Bhargava, S., Brooks, D., Burke, D. L., Carretero, J., Choi, A., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Doel, P., … Wester, W. (2021). Reducing ground-based astrometric errors with gaia and gaussian processes. Astronomical Journal, 162(3).Journal
Astronomical JournalRights
Copyright © 2021. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Stochastic field distortions caused by atmospheric turbulence are a fundamental limitation to the astrometric accuracy of ground-based imaging. This distortion field is measurable at the locations of stars with accurate positions provided by the Gaia DR2 catalog; we develop the use of Gaussian process regression (GPR) to interpolate the distortion field to arbitrary locations in each exposure. We introduce an extension to standard GPR techniques that exploits the knowledge that the 2D distortion field is curl-free. Applied to several hundred 90 s exposures from the Dark Energy Survey as a test bed, we find that the GPR correction reduces the variance of the turbulent astrometric distortions ≈12× , on average, with better performance in denser regions of the Gaia catalog. The rms per-coordinate distortion in the riz bands is typically ≈7 mas before any correction and ≈2 mas after application of the GPR model. The GPR astrometric corrections are validated by the observation that their use reduces, from 10 to 5 mas rms, the residuals to an orbit fit to riz-band observations over 5 yr of the r = 18.5 trans- Neptunian object Eris. We also propose a GPR method, not yet implemented, for simultaneously estimating the turbulence fields and the 5D stellar solutions in a stack of overlapping exposures, which should yield further turbulence reductions in future deep surveys. © 2021. The American Astronomical Society.Note
Immediate accessISSN
0004-6256Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/ac0722