Squeezing the angular momentum of an ensemble of complex multilevel atoms
Name:
PhysRevA.104.023710.pdf
Size:
1.290Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Center for Quantum Information and Control, College of Optical Sciences, Department of Physics, University of ArizonaIssue Date
2021
Metadata
Show full item recordPublisher
American Physical SocietyCitation
Hemmer, D., Montaño, E., Baragiola, B. Q., Norris, L. M., Shojaee, E., Deutsch, I. H., & Jessen, P. S. (2021). Squeezing the angular momentum of an ensemble of complex multilevel atoms. Physical Review A, 104(2).Journal
Physical Review ARights
Copyright © 2021 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Squeezing of collective atomic spins has been shown to improve the sensitivity of atomic clocks and magnetometers to levels significantly below the standard quantum limit. In most cases the requisite atom-atom entanglement has been generated by dispersive interaction with a quantized probe field or by state-dependent collisions in a quantum gas. Such experiments typically use complex multilevel atoms like Rb or Cs, with the relevant interactions designed so that atoms behave like pseudospin-12 particles. We demonstrate the viability of spin squeezing for collective spins composed of the physical angular momenta of 106 Cs atoms, each in an internal spin-4 hyperfine state. A peak metrological squeezing of at least 5dB is generated by quantum backaction from a dispersive quantum nondemolition (QND) measurement, implemented using a two-color optical probe that minimizes tensor light shifts without sacrificing measurement strength. Other significant developments include the successful application of composite pulse techniques for accurate dynamical control of the collective spin, enabled by broadband suppression of background magnetic fields inside a state-of-the-art magnetic shield. The absence of classical noise allows us to compare the observed quantum projection noise and squeezing to a theoretical model that properly accounts for both the relevant atomic physics and the spatial mode of the collective spin, finding good quantitative agreement and thereby validating its use in other contexts. Our work sets the stage for experiments on quantum feedback, deterministic squeezing, and closed-loop magnetometry. The implementation of real-time feedback may also create an opportunity for new types of quantum simulation, wherein the evolution of a quantum system is conditioned on the outcome of a time-continuous QND measurement. Such a scheme has the potential to access new regimes near the quantum-classical boundary, with opportunities to study long-standing issues related to quantum-classical correspondence in chaotic systems. © 2021 American Physical Society.Note
Immediate accessISSN
2469-9926Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1103/PhysRevA.104.023710