Synthesis, physicochemical characterization, in vitro 2d/3d human cell culture, and in vitro aerosol dispersion performance of advanced spray dried and co-spray dried angiotensin (1—7) peptide and pna5 with trehalose as microparticles/nanoparticles for targeted respiratory delivery as dry powder inhalers
Name:
pharmaceutics-13-01278-v4.pdf
Size:
72.89Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Chemistry & Biochemistry, The University of ArizonaSkaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona
The BIO5 Institute, The University of Arizona
Department of Physiology, The University of Arizona
Evelyn F. McKnight Brain Institute, The University of Arizona
Division of Translational & Regenerative Medicine, College of Medicine, The University of Arizona
Issue Date
2021Keywords
Air–liquid interfaceALI
Angiotensin
Brain
Cell viability
Glycopeptide
In vitro 2D/3D cell culture
Partitioning
Solid phase peptide synthesis
Solubility
SPPS
TEER
Transepithelial electrical resistance
Metadata
Show full item recordPublisher
MDPICitation
Alabsi, W., Acosta, M. F., Al-Obeidi, F. A., Hay, M., Polt, R., & Mansour, H. M. (2021). Synthesis, physicochemical characterization, in vitro 2d/3d human cell culture, and in vitro aerosol dispersion performance of advanced spray dried and co-spray dried angiotensin (1—7) peptide and pna5 with trehalose as microparticles/nanoparticles for targeted respiratory delivery as dry powder inhalers. Pharmaceutics, 13(8).Journal
PharmaceuticsRights
Copyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The peptide hormone Angiotensin (1—7), Ang (1—7) or (Asp-Arg-Val-Tyr-Ile-His-Pro), is an essential component of the renin–angiotensin system (RAS) peripherally and is an agonist of the Mas receptor centrally. Activation of this receptor in the CNS stimulates various biological activities that make the Ang (1—7)/MAS axis a novel therapeutic approach for the treatment of many diseases. The related O-linked glycopeptide, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-D-Glc)-amide (PNA5), is a biousian revision of the native peptide hormone Ang (1—7) and shows enhanced stability in vivo and greater levels of brain penetration. We have synthesized the native Ang (1—7) peptide and the glycopeptide, PNA5, and have formulated them for targeted respiratory delivery as inhalable dry powders. Solid phase peptide synthesis (SPPS) successfully produced Ang (1—7) and PNA5. Measurements of solubility and lipophilicity of raw Ang (1—7) and raw PNA5 using experimental and computational approaches confirmed that both the peptide and glycopeptide have high-water solubility and are amphipathic. Advanced organic solution spray drying was used to engineer the particles and produce spray-dried powders (SD) of both the peptide and the glycopeptide, as well as co-spray-dried powders (co-SD) with the non-reducing sugar and pharmaceutical excipient, trehalose. The native peptide, glycopeptide, SD, and co-SD powders were comprehensively characterized, and exhibited distinct glass transitions (Tg) consistent with the amorphous glassy state formation with Tgs that are compatible with use in vivo. The homogeneous particles displayed small sizes in the nanometer size range and low residual water content in the solid-state. Excellent aerosol dispersion performance with a human DPI device was demonstrated. In vitro human cell viability assays showed that Ang (1—7) and PNA5 are biocompatible and safe for different human respiratory and brain cells. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Note
Open access journalISSN
1999-4923Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3390/pharmaceutics13081278
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).