Spitzer's last look at extragalactic explosions: Long-term evolution of interacting supernovae
Name:
Szalai_2021_ApJ_919_17.pdf
Size:
1.599Mb
Format:
PDF
Description:
Final Published Version
Author
Szalai, T.Fox, O.D.
Arendt, R.G.
Dwek, E.
Andrews, J.E.
Clayton, G.C.
Filippenko, A.V.
Johansson, J.
Kelly, P.L.
Krafton, K.
Marston, A.P.
Mauerhan, J.C.
Van Dyk, S.D.
Affiliation
Steward Observatory, University of ArizonaIssue Date
2021Keywords
Circumstellar dust (236)Circumstellar matter (241)
Infrared astronomy (786)
Infrared telescopes (794)
Supernovae (1668)
Metadata
Show full item recordPublisher
IOP Publishing LtdCitation
Szalai, T., Fox, O. D., Arendt, R. G., Dwek, E., Andrews, J. E., Clayton, G. C., Filippenko, A. V., Johansson, J., Kelly, P. L., Krafton, K., Marston, A. P., Mauerhan, J. C., & Van Dyk, S. D. (2021). Spitzer’s last look at extragalactic explosions: Long-term evolution of interacting supernovae. Astrophysical Journal, 919(1).Journal
Astrophysical JournalRights
Copyright © 2021. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Here we present new, yet final, mid-infrared (mid-IR) data for supernovae (SNe) based on measurements with the Spitzer Space Telescope. Comparing our recent 3.6 and 4.5 μm photometry with previously published mid-IR and further multiwavelength data sets, we were able to draw some conclusions about the origin and heating mechanism of the dust in these SNe or in their environments, as well as about possible connection with circumstellar matter (CSM) originating from pre-explosion mass-loss events in the progenitor stars. We also present new results regarding both certain SN classes and single objects. We highlight the mid-IR homogeneity of SNe Ia-CSM, which may be a hint of their common progenitor type and of their basically uniform circumstellar environments. Regarding single objects, it is worth highlighting the late-time interacting Type Ib SNe 2003gk and 2004dk, for which we present the first-ever mid-IR data, which seem to be consistent with clues of ongoing CSM interaction detected in other wavelength ranges. Our current study suggests that long-term mid-IR follow-up observations play a key role in a better understanding of both pre- and post-explosion processes in SNe and their environments. While Spitzer is not available anymore, the expected unique data from the James Webb Space Telescope, as well as long-term near-IR follow-up observations of dusty SNe, can bring us closer to the hidden details of this topic. © 2021 Institute of Physics Publishing. All rights reserved.Note
Immediate accessISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ac0e2b