• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Modeling and Emulation of Optical Networks for SDN Control

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_19115_sip1_m.pdf
    Size:
    3.706Mb
    Format:
    PDF
    Download
    Author
    Quraishy, Aamir Nasir
    Issue Date
    2021
    Keywords
    Emulation
    Mininet-Optical
    Modelling
    Optical Fiber
    Optical Networks
    Software Defined Networking
    Advisor
    Kilper, Daniel
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Today's telecommunications networks are facing increasing internet traffic demands for a variety of high data-rate applications including virtual reality (VR), video-conferencing, and high-definition (HD) video streaming. Optical networks are more efficient than wired and copper networks over long distances and high speeds, and thus have been a large contributor for increasing data capacities over the past several decades. Developments in optical fiber technologies have allowed optical networks to be manufactured at steadily lower cost per bit. However networks do not just need to handle larger traffic volumes, they also need to work with existing network architectures and accommodate traffic requests with different requirements. One method for addressing this challenge is Software Defined Networking (SDN). SDN separates the control and data-plane so the data management and control decisions are made by a central controller that direct information as need be. However, developing SDN systems for optical networks at scale is difficult because optical networks need to consider signal quality and nonlinear fiber impairment. Mininet-Optical is an optical network emulator designed to emulate a multi-layer optical network so network designers can develop SDN control algorithms. Mininet is an open-source tool for studying SDN but does not support optical networks. We developed an optical layer simulator that is integrated into Mininet Optical. We evaluated this approach using the open-source planning tool GNPy and showed strong agreement. We also developed an SDN control algorithm for provisioning optical networks with bandwidth variable transceivers (BVTs) and examined how the SDN controller responds to diurnal traffic. BVT technology has received attention from the SDN community because of its ability to change modulation formats to optimize network capacity and their performance depends on the quality of transmission. This adds an extra element of control that SDN controllers can use to respond to varying traffic conditions such as diurnal traffic patterns and respond to different traffic needs. In this thesis we discuss SDN control, BVTs, Diurnal traffic modeling, optical fiber transmission physics, and the mininet optical system. From this, we will examine SDN control for a network with BVTs handling requests from metro networks in residential and office areas with diurnal traffic. This work shows how BVTs operate in an SDN controlled network while responding to time-varying traffic, and show non-linear impairment induced switching for heavily-loaded traffic.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.