• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Characterization of U(-V) Deposits in the La Sal District, UT and CO and their Relationship to Paradox Basin Fluid Flow

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_19125_sip1_m.pdf
    Size:
    4.363Mb
    Format:
    PDF
    Download
    Author
    Bos Orent, Eytan
    Issue Date
    2021
    Advisor
    Barton, Mark D.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The tabular sandstone-hosted uranium (U) and vanadium (V) deposits of the La Sal district form a 1-3 km wide, 30-km long belt spanning the Utah-Colorado border. They exemplify one of the principal types of U(-V) mineralization of the Paradox Basin and encompassing Colorado Plateau. Building on previous work, new field, petrographic and geochemical data provide the framework for an updated district synthesis of La Sal and its place in the broader geological context. Ore is hosted in the uppermost fluvial sandstones of the Salt Wash Member of the Jurassic Morrison Formation and forms elongate orebodies up to 180 m long, 90 m wide, and 1 m thick. Sparse organic material, mainly in the form of coalified plant fragments, is present in the sandstones which are interbedded with finer-grained silty, muddy and calcareous units. Principal changes in the rocks include bleaching by removal or reaction of early diagenetic hematite, a feature that is coextensive with quartz overgrowths . Later formed were compositionally distinct carbonate cements, and reaction of feldspars to kaolinitic clays. Bleaching was prior to or contemporaneous with (or both) mineralization, which is restricted to bleached rocks. Petrography shows that ore minerals (uraninite, coffinite, and montroseite) at least in part predate growth of authigenic quartz cements, and were in turn followed by the formation of V-rich sheet silicates (which may reflect reaction of montroseite with quartz and other minerals), carbonates, and clay cements. Depositional features control where mineral growth occurred and include sedimentary structures (e.g., crossbedding), primary porosity, and the distribution of lithofacies in trends like the La Sal channel system. The thin section to district-scale observations suggest that mineralization reflects mixing of two fluids, as has been suggested in other Plateau deposits, or, alternatively as a reaction of oxidized fluids with a preceding exogenous reduced component caused by bleaching. Increasing evidence in this area and elsewhere in the Paradox Basin suggests a complex fluid history including a major role for hydrocarbon-bearing fluids in bleaching and localization of metals beginning at least as early as the Late Triassic.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Geosciences
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.