• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Round 3-Final.pdf
    Size:
    1.232Mb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Cheramin, Meysam
    Saha, Apurba Kumar
    Cheng, Jianqiang
    Paul, Sanjoy Kumar
    Jin, Hongyue
    Affiliation
    Department of Systems and Industrial Engineering, University of Arizona
    Issue Date
    2021-11
    Keywords
    Benders decomposition
    COVID-19 pandemic
    Rare earth magnet
    Reverse logistics
    Stochastic programming
    Supply chain optimization
    
    Metadata
    Show full item record
    Publisher
    Elsevier BV
    Citation
    Cheramin, M., Saha, A. K., Cheng, J., Paul, S. K., & Jin, H. (2021). Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition. Transportation Research Part E: Logistics and Transportation Review.
    Journal
    Transportation Research Part E: Logistics and Transportation Review
    Rights
    © 2021 Elsevier Ltd. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    Neodymium-iron-boron (NdFeB) magnets are the most powerful magnets per unit volume sold in the commercial market. Despite the increasing demand for clean energy applications such as electric vehicles and wind turbines, disruptive events including the COVID-19 pandemic have caused significant uncertainties in the supply and demand for NdFeB magnets. Therefore, this study aims to alleviate the risk of supply shortage for NdFeB magnets and the containing critical materials, rare-earth elements (REEs), through the development of a resilient reverse supply chain and logistics network design. We develop scenarios to model the unique impact of the COVID-19 pandemic on the proposed business, incorporating both disruption intensity and recovery rate. We formulate a chance-constrained two-stage stochastic programming model to maximize the profit while guaranteeing the network resiliency against disruption risks. To solve the problem in large-scale instances, we develop an efficient Benders decomposition algorithm that reduces the computational time by 98.5% on average compared to the default CPLEX algorithm. When applied to the United States, the model suggests the optimal facility locations, processing capacities, inventory levels, and material flows for NdFeB magnet recyclers that could meet 99.7% of the demand. To the best of our knowledge, this study is the first to incorporate the impacts of the COVID-19 pandemic to design a resilient NdFeB magnet recycling supply chain and logistics network, leveraging risk-averse stochastic programming.
    Note
    No embargo COVID-19
    ISSN
    1366-5545
    DOI
    10.1016/j.tre.2021.102505
    Version
    Final accepted manuscript
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.tre.2021.102505
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.