• Login
    View Item 
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    •   Home
    • UA Faculty Research
    • UA Faculty Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Quasi-static and dynamic behavior of additively manufactured lattice structures with hybrid topologies

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Quasi-static and Dynamic Behavior ...
    Size:
    40.84Mb
    Format:
    PDF
    Description:
    Final Accepted Manuscript
    Download
    Author
    Barnes, Baxter
    Babamiri, Behzad Bahrami
    Demeneghi, Gabriel
    Soltani-Tehrani, Arash
    Shamsaei, Nima
    Hazeli, Kavan
    Affiliation
    Aerospace and Mechanical Engineering Department, The University of Arizona
    Issue Date
    2021-12
    Keywords
    Additive manufacturing
    Deformation mechanisms
    Hybrid lattice structure
    Optimization
    
    Metadata
    Show full item record
    Publisher
    Elsevier BV
    Citation
    Barnes, B., Babamiri, B. B., Demeneghi, G., Soltani-Tehrani, A., Shamsaei, N., & Hazeli, K. (2021). Quasi-static and dynamic behavior of additively manufactured lattice structures with hybrid topologies. Additive Manufacturing.
    Journal
    Additive Manufacturing
    Rights
    © 2021 Elsevier B.V. All rights reserved.
    Collection Information
    This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
    Abstract
    When different unit cell topologies with distinct mechanical behavior (e.g. bending vs stretching dominated) are incorporated into a single hybrid lattice structure (LS), questions arise about the resolution of local stresses within the struts and how localized states of strain as a result govern the global response of the structure. To understand the mechanics of hybrid LS, this study uses a combination of experimental and modeling data to investigate the relationship between localized states of stress with the global behavior of hybrid additive manufactured lattice structures (AMLS) under different loading directions and strain rates. The hybrid AMLS in this study consist of two different unit cell topologies stacked in alternating rows, with loading directions identified with respect to this topology stacking. It is shown that the loading direction influences the mechanical behavior, as the flow stress of the hybrid AMLS is 7%–10% lower when loaded in the stacking direction than when loaded in the transverse direction. This flow stress decrease is due to a smaller number of structural elements supporting the loading and tensile failure of horizontally-manufactured struts in the stacking direction. The strain rate also influenced the mechanical behavior of the AMLS, as irrespective to the loading direction, for all hybrid AMLS, the first peak stress after static equilibrium is 5%–10% higher under dynamic loading compared to quasi-static loading. Additionally, it is shown that the collapse mechanisms are influenced by the order of the topology stacking. Structural shear band formation, which leads to up to a 60% drop in flow stress under dynamic loading of the hybrid AMLS, can be inhibited by separating adjacent rows of shear band-forming topologies with a row of unit cells of a topology which does not form shear bands. Ultimately, it was determined that the performance of these layered structures is limited by the weakest topology. Even under transverse loading, where the first peak stress approaches that of the stronger topology, the magnitude of the subsequent decrease in flow stress is generally more in line with that of the weaker topology.
    Note
    24 month embargo; available online: 14 November 2021
    ISSN
    2214-8604
    DOI
    10.1016/j.addma.2021.102466
    Version
    Final accepted manuscript
    Sponsors
    NSF
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.addma.2021.102466
    Scopus Count
    Collections
    UA Faculty Publications

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.