• Login
    View Item 
    •   Home
    • Journals and Magazines
    • Society for Range Management Journal Archives
    • Rangeland Ecology & Management / Journal of Range Management
    • Rangeland Ecology & Management, Volume 69 (2016)
    • Rangeland Ecology & Management, Volume 69, Number 2 (March 2016)
    • View Item
    •   Home
    • Journals and Magazines
    • Society for Range Management Journal Archives
    • Rangeland Ecology & Management / Journal of Range Management
    • Rangeland Ecology & Management, Volume 69 (2016)
    • Rangeland Ecology & Management, Volume 69, Number 2 (March 2016)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Spatially Explicit Rangeland Erosion Monitoring Using High-Resolution Digital Aerial Imagery

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Spatially-Explicit-Rangeland-E ...
    Size:
    2.346Mb
    Format:
    PDF
    Download
    Author
    Gillan, J.K.
    Karl, J.W.
    Barger, N.N.
    Elaksher, A.
    Duniway, M.C.
    Issue Date
    2016
    Keywords
    change detection
    digital elevation model
    photogrammetry
    rangeland monitoring
    remote sensing
    soil erosion
    
    Metadata
    Show full item record
    Citation
    Gillan, J. K., Karl, J. W., Barger, N. N., Elaksher, A., & Duniway, M. C. (2016). Spatially Explicit Rangeland Erosion Monitoring Using High-Resolution Digital Aerial Imagery. Rangeland Ecology & Management, 69(2), 95–107.
    Publisher
    Society for Range Management
    Journal
    Rangeland Ecology & Management
    URI
    http://hdl.handle.net/10150/662800
    DOI
    10.1016/j.rama.2015.10.012
    Additional Links
    https://rangelands.org/
    Abstract
    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ±8-9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higherresolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and processfocused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to quantitatively monitor surface change over time relative to management activities. © 2016 The Society for Range Management. Published by Elsevier Inc. All rights reserved.
    Type
    Article
    text
    Language
    en
    ISSN
    1550-7424
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.rama.2015.10.012
    Scopus Count
    Collections
    Rangeland Ecology & Management, Volume 69, Number 2 (March 2016)

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.