Show simple item record

dc.contributor.authorBloch, E.M.
dc.contributor.authorJollands, M.C.
dc.contributor.authorTollan, P.
dc.contributor.authorPlane, F.
dc.contributor.authorBouvier, A.-S.
dc.contributor.authorHervig, R.
dc.contributor.authorBerry, A.J.
dc.contributor.authorZaubitzer, C.
dc.contributor.authorEscrig, S.
dc.contributor.authorMüntener, O.
dc.contributor.authorIbañez-Mejia, M.
dc.contributor.authorAlleon, J.
dc.contributor.authorMeibom, A.
dc.contributor.authorBaumgartner, L.P.
dc.contributor.authorMarin-Carbonne, J.
dc.contributor.authorNewville, M.
dc.date.accessioned2022-01-12T22:01:11Z
dc.date.available2022-01-12T22:01:11Z
dc.date.issued2022-01
dc.identifier.citationBloch, E. M., Jollands, M. C., Tollan, P., Plane, F., Bouvier, A.-S., Hervig, R., et al. (2022). Diffusion anisotropy of Ti in zircon and implications for Ti-in-zircon thermometry. Earth and Planetary Science Letters, 578, 117317.en_US
dc.identifier.issn0012-821X
dc.identifier.doi10.1016/j.epsl.2021.117317
dc.identifier.urihttp://hdl.handle.net/10150/662867
dc.description.abstractTi-in-zircon thermometry has become a widely used tool to determine zircon crystallization temperatures, in part due to reports of extremely sluggish Ti diffusion perpendicular to the crystallographic c-axis in this mineral. We have conducted Ti-in-zircon diffusion experiments, focusing on diffusion parallel to the c-axis, at 1 atm pressure between 1100 and 1540 °C, with oxygen fugacities equivalent to air and the Ni-NiO buffer. There is no resolvable dependence of Ti diffusion in zircon upon silica or zirconia activity, or upon oxygen fugacity. The diffusion coefficient of Ti in zircon is found to be a weak function of its own concentration, spanning less than 0.5 log units across any profile induced below 1300 °C. Ti diffusion in zircon, parallel to the c-axis at 1 atm pressure, is well described using: [Formula presented] where R is the gas constant in J/(mol⋅K). In conjunction with diffusion coefficients for Ti in zircon perpendicular to the c-axis reported by Cherniak and Watson (2007), strong diffusion anisotropy for Ti in zircon is observed. Diffusion parallel to the c-axis is ∼4-5 orders of magnitude faster than diffusion perpendicular to the c-axis within the experimentally constrained temperature range shared between these two studies (1540-1350 °C). This difference increases if the data are extrapolated to lower temperatures and reaches ∼7.5-11 orders of magnitude between 950-600 °C, a typical range for zircon crystallization. Diffusion of Ti in natural zircons will predominantly occur parallel to the c-axis, and the Ti-in-zircon thermometer appears susceptible to diffusive modification under some crustal conditions. Temperatures calculated using this system should therefore be evaluated on a case-by-case basis, particularly when considering high-T, slowly cooled, reheated and/or small zircons.en_US
dc.language.isoenen_US
dc.publisherElsevier BVen_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subjectdiffusionen_US
dc.subjectdiffusion anisotropyen_US
dc.subjectthermometryen_US
dc.subjectTi-in-zirconen_US
dc.subjectzirconen_US
dc.titleDiffusion anisotropy of Ti in zircon and implications for Ti-in-zircon thermometryen_US
dc.typeArticleen_US
dc.contributor.departmentDepartment of Geosciences, University of Arizonaen_US
dc.identifier.journalEarth and Planetary Science Lettersen_US
dc.description.note24 month embargo; available online: 7 December 2021en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.identifier.piiS0012821X21005732
dc.source.journaltitleEarth and Planetary Science Letters
dc.source.volume578
dc.source.beginpage117317
refterms.dateFOA2022-01-12T22:01:13Z


Files in this item

Thumbnail
Name:
Bloch et al 2022 EPSL.pdf
Size:
4.868Mb
Format:
PDF
Description:
Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record