• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Master's Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    The Composition and Diversity of Volatile Organic Compounds (VOCs) From Leaf Litter in the Biosphere 2 Tropical Rainforest

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_19376_sip1_m.pdf
    Size:
    2.169Mb
    Format:
    PDF
    Download
    Author
    Crocker, Lia Noel
    Issue Date
    2021
    Keywords
    Biosphere 2
    litter
    VOC
    Advisor
    U'Ren, Jana M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Background: Volatile Organic Compounds (VOCs) are organic compounds with high vapor pressure at room temperature released by plants, bacteria, archaea, fungi, and protists. Plants and microbes can produce VOCs as a means of communication (i.e., signaling and species interactions) or as a mechanism to ameliorate abiotic stress (e.g., isoprene with high temperatures). The majority of microbial VOC (mVOC) studies have focused on volatiles produced from soils, but recent evidence suggests that leaf litter can have greater VOC production, microbial biomass, and respiration rates adjacent soil. However, it is difficult to differentiate plant VOCs from mVOCs and identify the different mechanisms driving their release into the atmosphere. Thus, as part of an ecosystem-scale project at the Biosphere 2 Tropical Rainforest (B2 TRF) that addressed the impact of drought on VOCs from soil and living leaves (i.e., Biosphere 2 Water, Atmosphere, and Life Dynamics: B2 WALD), I performed a 10-day VOC experiment of leaf litter to: (i) quantify and identify VOCs produced by Clitoria leaf litter in B2TRF; (ii) examine the impact of moisture on litter VOC flux; and (iii) determine whether flux patterns can be used to distinguish plant VOCs and mVOCs. Methods: Leaf litter was collected from five individuals of Clitoria fairchildiana distributed across the B2 TRF. VOCs were continuously measured over a 10-day period from four replicate chambers and a control chamber using proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). To examine the impact of moisture on VOC fluxes, leaf litter was wet after seven days to simulate a rainfall event. VOCs were identified by comparing each mass to a reference database and flux calculations were performed to examine change in VOC abundance over time, after accounting for the control. Results: In total, 304 VOCs were identified across all four replicate chambers. Wetting altered the flux of 35% of litter VOCs. Among VOCs emitted after wetting, 72 decreased to pre-wetting levels within 24 hours, while 25 sustained higher production with increased moisture. Conclusions: Leaf litter represents a significant source of VOCs yet even with high resolution real-time data it is difficult to differentiate plant-derived VOCs from mVOCs due to shared metabolic pathways, as well as limited information on mVOCs. In addition, although I hypothesized that wetting would stimulate mVOC production, strong fluxes of VOCs after wetting were likely plant-derived VOCs whose release from the leaf surface was amplified by Henry’s law. Future work is needed to identify mVOCs from microbial cultures and link to leaf-level measurements.
    Type
    text
    Electronic Thesis
    Degree Name
    M.S.
    Degree Level
    masters
    Degree Program
    Graduate College
    Biosystems Engineering
    Degree Grantor
    University of Arizona
    Collections
    Master's Theses

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.