Show simple item record

dc.contributor.authorZhu, Tao
dc.contributor.authorShen, Lening
dc.contributor.authorXun, Sangni
dc.contributor.authorSarmiento, Julio S.
dc.contributor.authorYang, Yongrui
dc.contributor.authorZheng, Luyao
dc.contributor.authorLi, Hong
dc.contributor.authorWang, He
dc.contributor.authorBredas, Jean‐Luc
dc.contributor.authorGong, Xiong
dc.date.accessioned2022-03-08T22:46:55Z
dc.date.available2022-03-08T22:46:55Z
dc.date.issued2022-02-19
dc.identifier.citationZhu, T., Shen, L., Xun, S., Sarmiento, J. S., Yang, Y., Zheng, L., Li, H., Wang, H., Bredas, J.-L., & Gong, X. (2022). High-Performance Ternary Perovskite–Organic Solar Cells. Advanced Materials.en_US
dc.identifier.issn0935-9648
dc.identifier.doi10.1002/adma.202109348
dc.identifier.urihttp://hdl.handle.net/10150/663514
dc.description.abstractPerovskite solar cells in which 2D perovskites are incorporated within a 3D perovskite network exhibit improved stability with respect to purely 3D systems, but lower record power conversion efficiencies (PCEs). Here, a breakthrough is reported in achieving enhanced PCEs, increased stability, and suppressed photocurrent hysteresis by incorporating n-type, low-optical-gap conjugated organic molecules into 2D:3D mixed perovskite composites. The resulting ternary perovskite–organic composites display extended absorption in the near-infrared region, improved film morphology, enlarged crystallinity, balanced charge transport, efficient photoinduced charge transfer, and suppressed counter-ion movement. As a result, the ternary perovskite–organic solar cells exhibit PCEs over 23%, which are among the best PCEs for perovskite solar cells with p–i–n device structure. Moreover, the ternary perovskite–organic solar cells possess dramatically enhanced stability and diminished photocurrent hysteresis. All these results demonstrate that the strategy of exploiting ternary perovskite–organic composite thin films provides a facile way to realize high-performance perovskite solar cells.en_US
dc.description.sponsorshipNational Science Foundationen_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.rights© 2022 Wiley-VCH GmbH.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.subjectlow-optical-gap conjugated organic moleculesen_US
dc.subjectperovskite solar cellsen_US
dc.subjectphotocurrent hysteresisen_US
dc.subjectpower conversion efficiencyen_US
dc.subjectternary perovskite–organic compositesen_US
dc.titleHigh‐Performance Ternary Perovskite–Organic Solar Cellsen_US
dc.typeArticleen_US
dc.identifier.eissn1521-4095
dc.contributor.departmentDepartment of Chemistry and Biochemistry, The University of Arizonaen_US
dc.identifier.journalAdvanced Materialsen_US
dc.description.note12 month embargo; first published: 17 January 2022en_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
dc.identifier.pii10.1002/adma.202109348
dc.source.journaltitleAdvanced Materials
dc.source.beginpage2109348


Files in this item

Thumbnail
Name:
MS adma.202109348R1 Final.pdf
Size:
1.480Mb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record