Show simple item record

dc.contributor.authorBrkic, Srdan
dc.contributor.authorIvanis, Predrag
dc.contributor.authorVasic, Bane
dc.date.accessioned2022-03-09T01:24:07Z
dc.date.available2022-03-09T01:24:07Z
dc.date.issued2021-11-23
dc.identifier.citationBrkic, S., Ivanis, P., & Vasic, B. (2021). Applicability of single- and two-hidden-layer neural networks in decoding linear block codes. 2021 29th Telecommunications Forum, TELFOR 2021 - Proceedings.en_US
dc.identifier.doi10.1109/telfor52709.2021.9653357
dc.identifier.urihttp://hdl.handle.net/10150/663519
dc.description.abstractIn this paper, we analyze applicability of single- and two-hidden-layer feed-forward artificial neural networks, SLFNs and TLFNs, respectively, in decoding linear block codes. Based on the provable capability of SLFNs and TLFNs to approximate discrete functions, we discuss sizes of the network capable to perform maximum likelihood decoding. Furthermore, we propose a decoding scheme, which use artificial neural networks (ANNs) to lower the error-floors of low-density parity-check (LDPC) codes. By learning a small number of error patterns, uncorrectable with typical decoders of LDPC codes, ANN can lower the error-floor by an order of magnitude, with only marginal average complexity incense.en_US
dc.description.sponsorshipScience Fund of the Republic of Serbiaen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsCopyright © 2021 IEEE.en_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/en_US
dc.source2021 29th Telecommunications Forum (TELFOR)
dc.subjectError-floorsen_US
dc.subjectLinear block codesen_US
dc.subjectLow-density parity-check codesen_US
dc.subjectML decodingen_US
dc.subjectNeural networksen_US
dc.titleApplicability of single- and two-hidden-layer neural networks in decoding linear block codesen_US
dc.typeArticleen_US
dc.contributor.departmentUniversity of Arizona, Department of Electrical and Computer Engineeringen_US
dc.identifier.journal2021 29th Telecommunications Forum, TELFOR 2021 - Proceedingsen_US
dc.description.noteImmediate accessen_US
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.en_US
dc.eprint.versionFinal accepted manuscripten_US
refterms.dateFOA2022-03-09T01:24:09Z


Files in this item

Thumbnail
Name:
TELFOR_2021_peer-review.pdf
Size:
256.1Kb
Format:
PDF
Description:
Final Accepted Manuscript

This item appears in the following Collection(s)

Show simple item record