APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites
Name:
Hasselquist_2021_ApJ_923_172.pdf
Size:
3.770Mb
Format:
PDF
Description:
Final Published Version
Author
Hasselquist, S.Hayes, C.R.
Lian, J.
Weinberg, D.H.
Zasowski, G.
Horta, D.
Beaton, R.
Feuillet, D.K.
Garro, E.R.
Gallart, C.
Smith, V.V.
Holtzman, J.A.
Minniti, D.
Lacerna, I.
Shetrone, M.
Jönsson, H.
Cioni, M.-R.L.
Fillingham, S.P.
Cunha, K.
O'Connell, R.
Fernández-Trincado, J.G.
Munoz, R.R.
Schiavon, R.
Almeida, A.
Anguiano, B.
Beers, T.C.
Bizyaev, D.
Brownstein, J.R.
Cohen, R.E.
Frinchaboy, P.
García-Hernández, D.A.
Geisler, D.
Lane, R.R.
Majewski, S.R.
Nidever, D.L.
Nitschelm, C.
Povick, J.
Price-Whelan, A.
Roman-Lopes, A.
Rosado, M.
Sobeck, J.
Stringfellow, G.
Valenzuela, O.
Villanova, S.
Vincenzo, F.
Affiliation
Steward Observatory, University of ArizonaIssue Date
2021Keywords
machine-readable table
Metadata
Show full item recordPublisher
American Astronomical SocietyCitation
Hasselquist, S., Hayes, C. R., Lian, J., Weinberg, D. H., Zasowski, G., Horta, D., Beaton, R., Feuillet, D. K., Garro, E. R., Gallart, C., Smith, V. V., Holtzman, J. A., Minniti, D., Lacerna, I., Shetrone, M., Jönsson, H., Cioni, M.-R. L., Fillingham, S. P., Cunha, K., … Vincenzo, F. (2021). APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites. Astrophysical Journal.Journal
Astrophysical JournalRights
Copyright © 2021. The American Astronomical Society. All rights reserved.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey has obtained high-resolution spectra for thousands of red giant stars distributed among the massive satellite galaxies of the Milky Way (MW): the Large and Small Magellanic Clouds (LMC/SMC), the Sagittarius Dwarf Galaxy (Sgr), Fornax (Fnx), and the now fully disrupted Gaia Sausage/Enceladus (GSE) system. We present and analyze the APOGEE chemical abundance patterns of each galaxy to draw robust conclusions about their star formation histories, by quantifying the relative abundance trends of multiple elements (C, N, O, Mg, Al, Si, Ca, Fe, Ni, and Ce), as well as by fitting chemical evolution models to the [α/Fe]-[Fe/H] abundance plane for each galaxy. Results show that the chemical signatures of the starburst in the Magellanic Clouds (MCs) observed by Nidever et al. in the α-element abundances extend to C+N, Al, and Ni, with the major burst in the SMC occurring some 3-4 Gyr before the burst in the LMC. We find that Sgr and Fnx also exhibit chemical abundance patterns suggestive of secondary star formation epochs, but these events were weaker and earlier (∼5-7 Gyr ago) than those observed in the MCs. There is no chemical evidence of a second starburst in GSE, but this galaxy shows the strongest initial star formation as compared to the other four galaxies. All dwarf galaxies had greater relative contributions of AGB stars to their enrichment than the MW. Comparing and contrasting these chemical patterns highlight the importance of galaxy environment on its chemical evolution. © 2021. The American Astronomical Society. All rights reserved..Note
Immediate accessISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ac25f9