Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration
Name:
PhysRevD.105.023514.pdf
Size:
3.891Mb
Format:
PDF
Description:
Final Published Version
Author
DES CollaborationAffiliation
Department of Astronomy, Steward Observatory, University of ArizonaDepartment of Physics, University of Arizona
Issue Date
2022
Metadata
Show full item recordPublisher
American Physical SocietyCitation
Amon, A., Gruen, D., Troxel, M. A., Maccrann, N., Dodelson, S., Choi, A., Doux, C., Secco, L. F., Samuroff, S., Krause, E., Cordero, J., Myles, J., Derose, J., Wechsler, R. H., Gatti, M., Navarro-Alsina, A., Bernstein, G. M., Jain, B., Blazek, J., … (DES Collaboration). (2022). Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Physical Review D.Journal
Physical Review DRights
Copyright © 2022 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
This work, together with its companion paper, Secco, Samuroff et al. [Phys. Rev. D 105, 023515 (2022)PRVDAQ2470-001010.1103/PhysRevD.105.023515], present the Dark Energy Survey Year 3 cosmic-shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data spanning 4143 deg2 on the sky, divided into four redshift bins, we produce a measurement with a signal-to-noise of 40. We conduct a blind analysis in the context of the Lambda-Cold Dark Matter (ΛCDM) model and find a 3% constraint of the clustering amplitude, S8σ8(ωm/0.3)0.5=0.759-0.023+0.025. A ΛCDM-Optimized analysis, which safely includes smaller scale information, yields a 2% precision measurement of S8=0.772-0.017+0.018 that is consistent with the fiducial case. The two low-redshift measurements are statistically consistent with the Planck Cosmic Microwave Background result, however, both recovered S8 values are lower than the high-redshift prediction by 2.3σ and 2.1σ (p-values of 0.02 and 0.05), respectively. The measurements are shown to be internally consistent across redshift bins, angular scales and correlation functions. The analysis is demonstrated to be robust to calibration systematics, with the S8 posterior consistent when varying the choice of redshift calibration sample, the modeling of redshift uncertainty and methodology. Similarly, we find that the corrections included to account for the blending of galaxies shifts our best-fit S8 by 0.5σ without incurring a substantial increase in uncertainty. We examine the limiting factors for the precision of the cosmological constraints and find observational systematics to be subdominant to the modeling of astrophysics. Specifically, we identify the uncertainties in modeling baryonic effects and intrinsic alignments as the limiting systematics. © 2022 American Physical Society.Note
Immediate accessISSN
2470-0010Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1103/PhysRevD.105.023514