Show simple item record

dc.contributor.authorDES Collaboration
dc.date.accessioned2022-03-17T01:56:38Z
dc.date.available2022-03-17T01:56:38Z
dc.date.issued2022
dc.identifier.citationAmon, A., Gruen, D., Troxel, M. A., Maccrann, N., Dodelson, S., Choi, A., Doux, C., Secco, L. F., Samuroff, S., Krause, E., Cordero, J., Myles, J., Derose, J., Wechsler, R. H., Gatti, M., Navarro-Alsina, A., Bernstein, G. M., Jain, B., Blazek, J., … (DES Collaboration). (2022). Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Physical Review D.
dc.identifier.issn2470-0010
dc.identifier.doi10.1103/PhysRevD.105.023514
dc.identifier.urihttp://hdl.handle.net/10150/663544
dc.description.abstractThis work, together with its companion paper, Secco, Samuroff et al. [Phys. Rev. D 105, 023515 (2022)PRVDAQ2470-001010.1103/PhysRevD.105.023515], present the Dark Energy Survey Year 3 cosmic-shear measurements and cosmological constraints based on an analysis of over 100 million source galaxies. With the data spanning 4143 deg2 on the sky, divided into four redshift bins, we produce a measurement with a signal-to-noise of 40. We conduct a blind analysis in the context of the Lambda-Cold Dark Matter (ΛCDM) model and find a 3% constraint of the clustering amplitude, S8σ8(ωm/0.3)0.5=0.759-0.023+0.025. A ΛCDM-Optimized analysis, which safely includes smaller scale information, yields a 2% precision measurement of S8=0.772-0.017+0.018 that is consistent with the fiducial case. The two low-redshift measurements are statistically consistent with the Planck Cosmic Microwave Background result, however, both recovered S8 values are lower than the high-redshift prediction by 2.3σ and 2.1σ (p-values of 0.02 and 0.05), respectively. The measurements are shown to be internally consistent across redshift bins, angular scales and correlation functions. The analysis is demonstrated to be robust to calibration systematics, with the S8 posterior consistent when varying the choice of redshift calibration sample, the modeling of redshift uncertainty and methodology. Similarly, we find that the corrections included to account for the blending of galaxies shifts our best-fit S8 by 0.5σ without incurring a substantial increase in uncertainty. We examine the limiting factors for the precision of the cosmological constraints and find observational systematics to be subdominant to the modeling of astrophysics. Specifically, we identify the uncertainties in modeling baryonic effects and intrinsic alignments as the limiting systematics. © 2022 American Physical Society.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.rightsCopyright © 2022 American Physical Society.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleDark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration
dc.typeArticle
dc.typetext
dc.contributor.departmentDepartment of Astronomy, Steward Observatory, University of Arizona
dc.contributor.departmentDepartment of Physics, University of Arizona
dc.identifier.journalPhysical Review D
dc.description.noteImmediate access
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitlePhysical Review D
refterms.dateFOA2022-03-17T01:56:38Z


Files in this item

Thumbnail
Name:
PhysRevD.105.023514.pdf
Size:
3.891Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record