Infrared Absolute Calibration. I. Comparison of Sirius with Fainter Calibration Stars
Name:
Rieke_2022_AJ_163_45.pdf
Size:
936.5Kb
Format:
PDF
Description:
Final Published Version
Affiliation
Steward Observatory, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
American Astronomical SocietyCitation
Rieke, G. H., Su, K., Sloan, G. C., & Schlawin, E. (2022). Infrared Absolute Calibration. I. Comparison of Sirius with Fainter Calibration Stars. Astronomical Journal.Journal
Astronomical JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
A challenge in absolute calibration is to relate very bright stars with physical flux measurements to faint ones within range of modern instruments, e.g., those on large ground-based telescopes or the James Webb Space Telescope (JWST). We propose Sirius as the fiducial color standard. It is an A0V star that is slowly rotating and does not have infrared excesses due to either hot dust or a planetary debris disk; it also has a number of accurate (∼1%-2%) absolute flux measurements. We accurately transfer the near-infrared flux from Sirius to BD +60 1753, an unobscured early A-type star (A1V, V ≈ 9.6, E(B - V) ≈ 0.009) that is faint enough to serve as a primary absolute flux calibrator for JWST. Its near-infrared spectral energy distribution and that of Sirius should be virtually identical. We have determined its output relative to that of Sirius in a number of different ways, all of which give consistent results within ∼1%. We also transfer the calibration to GSPC P330-E, a well-calibrated close solar analog (G2V). We have emphasized the 2MASS K S band, since it represents a large number and long history of measurements, but the theoretical spectra (i.e., from CALSPEC) of these stars can be used to extend this result throughout the near- and mid-infrared. © 2022. The Author(s). Published by the American Astronomical Society..Note
Open access articleISSN
0004-6256Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/ac3b5d
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.