Show simple item record

dc.contributor.authorVos, J.M.
dc.contributor.authorFaherty, J.K.
dc.contributor.authorGagné, J.
dc.contributor.authorMarley, M.
dc.contributor.authorMetchev, S.
dc.contributor.authorGizis, J.
dc.contributor.authorRice, E.L.
dc.contributor.authorCruz, K.
dc.date.accessioned2022-03-17T01:56:50Z
dc.date.available2022-03-17T01:56:50Z
dc.date.issued2022
dc.identifier.citationVos, J. M., Faherty, J. K., Gagné, J., Marley, M., Metchev, S., Gizis, J., Rice, E. L., & Cruz, K. (2022). Let the Great World Spin: Revealing the Stormy, Turbulent Nature of Young Giant Exoplanet Analogs with the Spitzer Space Telescope. Astrophysical Journal.
dc.identifier.issn0004-637X
dc.identifier.doi10.3847/1538-4357/ac4502
dc.identifier.urihttp://hdl.handle.net/10150/663562
dc.description.abstractWe present a survey for photometric variability in young, low-mass brown dwarfs with the Spitzer Space Telescope. The 23 objects in our sample show robust signatures of youth and share properties with directly imaged exoplanets. We present three new young objects: 2MASS J03492367+0635078, 2MASS J09512690-8023553, and 2MASS J07180871-6415310. We detect variability in 13 young objects, and find that young brown dwarfs are highly likely to display variability across the L2-T4 spectral type range. In contrast, the field dwarf variability occurrence rate drops for spectral types >L9. We examine the variability amplitudes of young objects and find an enhancement in maximum amplitudes compared to field dwarfs. We speculate that the observed range of amplitudes within a spectral type may be influenced by secondary effects such as viewing inclination and/or rotation period. We combine our new rotation periods with the literature to investigate the effects of mass on angular momentum evolution. While high-mass brown dwarfs (>30M Jup) spin up over time, the same trend is not apparent for lower-mass objects (<30M Jup), likely due to the small number of measured periods for old, low-mass objects. The rotation periods of companion brown dwarfs and planetary-mass objects are consistent with those of isolated objects with similar ages and masses, suggesting similar angular momentum histories. Within the AB Doradus group, we find a high-variability occurrence rate and evidence for common angular momentum evolution. The results are encouraging for future variability searches in directly imaged exoplanets with facilities such as the James Webb Space Telescope and 30 m telescopes. © 2022. The Author(s). Published by the American Astronomical Society..
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.rightsCopyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleLet the Great World Spin: Revealing the Stormy, Turbulent Nature of Young Giant Exoplanet Analogs with the Spitzer Space Telescope
dc.typeArticle
dc.typetext
dc.contributor.departmentUniversity of Arizona, Department of Planetary Sciences and Lunar, Planetary Laboratory
dc.identifier.journalAstrophysical Journal
dc.description.noteOpen access article
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleAstrophysical Journal
refterms.dateFOA2022-03-17T01:56:50Z


Files in this item

Thumbnail
Name:
Vos_2022_ApJ_924_68.pdf
Size:
3.321Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.