Show simple item record

dc.contributor.authorWang, W.
dc.contributor.authorHe, C.
dc.contributor.authorMoore, J.
dc.contributor.authorWang, G.
dc.contributor.authorNiu, G.-Y.
dc.date.accessioned2022-03-17T01:57:08Z
dc.date.available2022-03-17T01:57:08Z
dc.date.issued2022
dc.identifier.citationWang, W., He, C., Moore, J., Wang, G., & Niu, G.-Y. (2022). Physics-Based Narrowband Optical Parameters for Snow Albedo Simulation in Climate Models. Journal of Advances in Modeling Earth Systems.
dc.identifier.issn1942-2466
dc.identifier.doi10.1029/2020MS002431
dc.identifier.urihttp://hdl.handle.net/10150/663595
dc.description.abstractAccurate snow albedo simulation is a prerequisite for climate models to produce reliable climate prediction. Climate models would benefit from schemes of snowpack radiative transfer that are responsive to changing atmospheric conditions. However, the uncertainties in the narrowband snow optical parameters used by these schemes have not been evaluated. Conventional methods typically compute these narrowband parameters as irradiance-weighted averages of the spectral snow optical parameters, with the single scattering albedo being additionally weighted by the optically thick snowpack albedo. We first evaluate the effectiveness of the conventional methods as adopted by the widely used Community Land Model (CLM). Snow albedo calculations using the CLM narrowband optical parameters are relatively accurate for very thin snow (e.g., a bias of 0.01 for a 2-cm snowpack). The error, however, becomes larger as snowpack thickens (with biases of up to 0.05 for semi-infinite snowpack), because the snow radiative transfer is highly nonlinear and is most significant at wavelengths <1 μm. In this study, we propose a novel method to retrieve broadband optical parameters according to snow radiative transfer theory, reducing the albedo biases to <0.003 for 2 cm snowpacks and <0.005 for thick snowpacks. We find little impact in changing incident spectra on narrowband snow albedo. These newly derived narrowband optical parameters improve snow albedo accuracy by a factor of 10, allowing to trace the impacts of aerosol pollution in snow. The parameters are independent of which two-stream approximation is used, and are thus applicable to sea ice, glaciers, and seasonal snow cover. © 2021 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
dc.language.isoen
dc.publisherJohn Wiley and Sons Inc
dc.rightsCopyright © 2021 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectalbedo
dc.subjectMie scattering
dc.subjectmodeling
dc.subjectnarrowband
dc.subjectradiative transfer
dc.subjectsnow
dc.titlePhysics-Based Narrowband Optical Parameters for Snow Albedo Simulation in Climate Models
dc.typeArticle
dc.typetext
dc.contributor.departmentDepartment of Hydrology and Atmospheric Sciences, The University of Arizona
dc.identifier.journalJournal of Advances in Modeling Earth Systems
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleJournal of Advances in Modeling Earth Systems
refterms.dateFOA2022-03-17T01:57:08Z


Files in this item

Thumbnail
Name:
JAdvModelEarthSyst_2021_Wang.pdf
Size:
4.036Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2021 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.
Except where otherwise noted, this item's license is described as Copyright © 2021 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.