Show simple item record

dc.contributor.advisorZacher, Brian
dc.contributor.authorFerrante, Sam
dc.creatorFerrante, Sam
dc.date.accessioned2022-03-23T20:20:38Z
dc.date.available2022-03-23T20:20:38Z
dc.date.issued2021
dc.identifier.citationFerrante, Sam. (2021). Giant Unilamellar Vesicle Generation Platform (Bachelor's thesis, University of Arizona, Tucson, USA).
dc.identifier.urihttp://hdl.handle.net/10150/663754
dc.description.abstractThis paper describes a platform for producing giant unilamellar vesicles (GUVs) with specified volume and contents, repeatedly, in a controlled environment. GUVs are membrane systems approximately the size of a cell used to study the function and structure of biological systems. Actively manipulating the contents of a GUV to determine its function provides many applications in biochemistry and medicine. However, artificially forming GUVs of monodisperse size, which can also contain essentially any contents such that they can be manipulated and studied, is difficult. We designed a system to produce GUVs repeatedly based on methods found in related literature. The technique involves microfluidic jetting of a desired solution from a standard syringe through a fitted glass needle using a piezoelectric actuator as the injection mechanism. Formation of the vesicles via a lipid bilayer and microfluidic jetting is similar to blowing a bubble on the microscopic scale. The customized components of our set-up include an infinity chamber where the vesicles are formed, the chamber base fitted to a Nikon Eclipse TE300 inverted microscope, and a syringe holder. Each of the manufactured components are relatively robust, cheap, and easily replaceable using designs detailed in this paper. Modeling the techniques and methods described in the article from Coyne, “Lipid Bilayer Vesicle Generation Using Microfluidic Jetting” [1], we developed our own stage for use in generating GUVs at the University of Arizona.
dc.language.isoen
dc.publisherThe University of Arizona.
dc.rightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.titleGiant Unilamellar Vesicle Generation Platform
dc.typeElectronic Thesis
dc.typetext
thesis.degree.grantorUniversity of Arizona
thesis.degree.levelbachelors
thesis.degree.disciplineChemistry
thesis.degree.disciplineHonors College
thesis.degree.nameB.S.
refterms.dateFOA2022-03-23T20:20:38Z


Files in this item

Thumbnail
Name:
azu_etd_hr_2021_0010_sip1_m.pdf
Size:
16.12Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record