Determining the Timescale over Which Stellar Feedback Drives Turbulence in the Interstellar Medium: A Study of Four Nearby Dwarf Irregular Galaxies
Name:
Congreve_Hunter_2022_AJ_163_132.pdf
Size:
3.244Mb
Format:
PDF
Description:
Final Published Version
Affiliation
University of Arizona, Steward ObservatoryIssue Date
2022
Metadata
Show full item recordPublisher
American Astronomical SocietyCitation
Congreve Hunter, L., Van Zee, L., McQuinn, K. B. W., Garner, R., Iii, & Dolphin, A. E. (2022). Determining the Timescale over Which Stellar Feedback Drives Turbulence in the Interstellar Medium: A Study of Four Nearby Dwarf Irregular Galaxies. Astronomical Journal.Journal
Astronomical JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Stellar feedback is fundamental to the modeling of galaxy evolution, as it drives turbulence and outflows in galaxies. Understanding the timescales involved are critical for constraining the impact of stellar feedback on the interstellar medium. We analyzed the resolved star formation histories along with the spatial distribution and kinematics of the atomic and ionized gas of four nearby star-forming dwarf galaxies (NGC 4068, NGC 4163, NGC 6789, and UGC 9128) to determine the timescales over which stellar feedback drives turbulence. The four galaxies are within 5 Mpc and have a range of properties including current star formation rates of 0.0005-0.01 Myr-1, log(M ∗/M) between 7.2 and 8.2, and log(M H i /M) between 7.2 and 8.3. Their color-magnitude diagram derived star formation histories over the past 500 Myr were compared to their atomic and ionized gas velocity dispersion and H i energy surface densities as indicators of turbulence. The Spearman's rank correlation coefficient was used to identify any correlations between their current turbulence and their past star formation activity on local scales (∼400 pc). The strongest correlation found was between the H i turbulence measures and the star formation rate 100-200 Myr ago. This suggests a coupling between the star formation activity and atomic gas on this timescale. No strong correlation between the ionized gas velocity dispersion and the star formation activity between 5 and 500 Myr ago was found. The sample and analysis are the foundation of a larger program aimed at understanding the timescales over which stellar feedback drives turbulence. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-6256Version
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-3881/ac4d2c
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.