Show simple item record

dc.contributor.authorCongreve Hunter, L.
dc.contributor.authorVan Zee, L.
dc.contributor.authorMcQuinn, K.B.W.
dc.contributor.authorGarner, R., III
dc.contributor.authorDolphin, A.E.
dc.date.accessioned2022-03-31T21:11:14Z
dc.date.available2022-03-31T21:11:14Z
dc.date.issued2022
dc.identifier.citationCongreve Hunter, L., Van Zee, L., McQuinn, K. B. W., Garner, R., Iii, & Dolphin, A. E. (2022). Determining the Timescale over Which Stellar Feedback Drives Turbulence in the Interstellar Medium: A Study of Four Nearby Dwarf Irregular Galaxies. Astronomical Journal.
dc.identifier.issn0004-6256
dc.identifier.doi10.3847/1538-3881/ac4d2c
dc.identifier.urihttp://hdl.handle.net/10150/663823
dc.description.abstractStellar feedback is fundamental to the modeling of galaxy evolution, as it drives turbulence and outflows in galaxies. Understanding the timescales involved are critical for constraining the impact of stellar feedback on the interstellar medium. We analyzed the resolved star formation histories along with the spatial distribution and kinematics of the atomic and ionized gas of four nearby star-forming dwarf galaxies (NGC 4068, NGC 4163, NGC 6789, and UGC 9128) to determine the timescales over which stellar feedback drives turbulence. The four galaxies are within 5 Mpc and have a range of properties including current star formation rates of 0.0005-0.01 Myr-1, log(M ∗/M) between 7.2 and 8.2, and log(M H i /M) between 7.2 and 8.3. Their color-magnitude diagram derived star formation histories over the past 500 Myr were compared to their atomic and ionized gas velocity dispersion and H i energy surface densities as indicators of turbulence. The Spearman's rank correlation coefficient was used to identify any correlations between their current turbulence and their past star formation activity on local scales (∼400 pc). The strongest correlation found was between the H i turbulence measures and the star formation rate 100-200 Myr ago. This suggests a coupling between the star formation activity and atomic gas on this timescale. No strong correlation between the ionized gas velocity dispersion and the star formation activity between 5 and 500 Myr ago was found. The sample and analysis are the foundation of a larger program aimed at understanding the timescales over which stellar feedback drives turbulence. © 2022. The Author(s). Published by the American Astronomical Society.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.rightsCopyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleDetermining the Timescale over Which Stellar Feedback Drives Turbulence in the Interstellar Medium: A Study of Four Nearby Dwarf Irregular Galaxies
dc.typeArticle
dc.typetext
dc.contributor.departmentUniversity of Arizona, Steward Observatory
dc.identifier.journalAstronomical Journal
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleAstronomical Journal
refterms.dateFOA2022-03-31T21:11:14Z


Files in this item

Thumbnail
Name:
Congreve_Hunter_2022_AJ_163_132.pdf
Size:
3.244Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.