Show simple item record

dc.contributor.authorLai, J.
dc.contributor.authorLi, Y.
dc.contributor.authorChen, J.
dc.contributor.authorNiu, G.-Y.
dc.contributor.authorLin, P.
dc.contributor.authorLi, Q.
dc.contributor.authorWang, L.
dc.contributor.authorHan, J.
dc.contributor.authorLuo, Z.
dc.contributor.authorSun, Y.
dc.date.accessioned2022-03-31T21:12:36Z
dc.date.available2022-03-31T21:12:36Z
dc.date.issued2022
dc.identifier.citationLai, J., Li, Y., Chen, J., Niu, G.-Y., Lin, P., Li, Q., Wang, L., Han, J., Luo, Z., & Sun, Y. (2022). Massive crop expansion threatens agriculture and water sustainability in northwestern China. Environmental Research Letters.
dc.identifier.issn1748-9318
dc.identifier.doi10.1088/1748-9326/ac46e8
dc.identifier.urihttp://hdl.handle.net/10150/663838
dc.description.abstractNorthwestern China (NWC) is among the major global hotspots undergoing massive terrestrial water storage (TWS) depletion. Yet driver(s) underlying such region-wide depletion remain controversial, i.e. warming-induced glaciermelting versus anthropogenic activities. Reconciling this controversy is the core initial step to guide policymaking to combat the dual challenges in agriculture production and water scarcity in the vastly dry NWC toward sustainable development. Utilizing diverse observations, we found persistent cropland expansion by >1.2 × 104 km2 since 2003, leading to growth of 59.9% in irrigated area and 19.5% in agricultural water use, despite a steady enhancement in irrigation efficiency. Correspondingly, a substantially faster evapotranspiration (ET) increase occurred in crop expansion areas, whereas precipitation exhibited no long-term trend. Counterfactual analyses suggest that the region-wide TWS depletion is unlikely to have occurred without an increase in crop expansion-driven ET even in the presence of glaciermelting. These findings imply that sustainable water management is critically needed to ensure agriculture and water security in NWC. © 2022 The Author(s). Published by IOP Publishing Ltd.
dc.language.isoen
dc.publisherIOP Publishing Ltd
dc.rightsCopyright © 2022 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectcrop expansion
dc.subjectdrylands
dc.subjectfreshwater depletion
dc.subjectirrigation
dc.subjectsustainable agriculture
dc.titleMassive crop expansion threatens agriculture and water sustainability in northwestern China
dc.typeArticle
dc.typetext
dc.contributor.departmentDepartment of Hydrology and Atmospheric Sciences, The University of Arizona
dc.identifier.journalEnvironmental Research Letters
dc.description.noteOpen access journal
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleEnvironmental Research Letters
refterms.dateFOA2022-03-31T21:12:36Z


Files in this item

Thumbnail
Name:
Lai_2022_Environ._Res._Lett._1 ...
Size:
1.795Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2022 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
Except where otherwise noted, this item's license is described as Copyright © 2022 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.