Human cardiac myosin-binding protein C phosphorylation- and mutation-dependent structural dynamics monitored by time-resolved FRET
Name:
1-s2.0-S0022282822000335-main.pdf
Size:
1.555Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Cellular and Molecular Medicine, University of ArizonaIssue Date
2022-02-25Keywords
BiosensorCardiac myosin-binding protein C (cMyBP-C)
fluorescence lifetime
High-throughput screening (HTS)
Phosphorylation
protein kinase A (PKA)
Time-resolved fluorescence resonance energy transfer (TR-FRET)
Metadata
Show full item recordPublisher
Academic PressCitation
Kanassatega, R.-S., Bunch, T. A., Lepak, V. C., Wang, C., & Colson, B. A. (2022). Human cardiac myosin-binding protein C phosphorylation- and mutation-dependent structural dynamics monitored by time-resolved FRET. Journal of Molecular and Cellular Cardiology.Rights
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein of the sarcomere and a potential therapeutic target for treating contractile dysfunction in heart failure. Mimicking the structural dynamics of phosphorylated cMyBP-C by small-molecule drug binding could lead to therapies that modulate cMyBP-C conformational states, and thereby function, to improve contractility. We have developed a human cMyBP-C biosensor capable of detecting intramolecular structural changes due to phosphorylation and mutation. Using site-directed mutagenesis and time-resolved fluorescence resonance energy transfer (TR-FRET), we substituted cysteines in cMyBP-C N-terminal domains C0 through C2 (C0-C2) for thiol-reactive fluorescent probe labeling to examine C0-C2 structure. We identified a cysteine pair that upon donor-acceptor labeling reports phosphorylation-sensitive structural changes between the C1 domain and the tri-helix bundle of the M-domain that links C1 to C2. Phosphorylation reduced FRET efficiency by ~18%, corresponding to a ~11% increase in the distance between probes and a ~30% increase in disorder between them. The magnitude and precision of phosphorylation-mediated TR-FRET changes, as quantified by the Z'-factor, demonstrate the assay's potential for structure-based high-throughput screening of compounds for cMyBP-C-targeted therapies to improve cardiac performance in heart failure. Additionally, by probing C1's spatial positioning relative to the tri-helix bundle, these findings provide new molecular insight into the structural dynamics of phosphoregulation as well as mutations in cMyBP-C. Biosensor sensitivity to disease-relevant mutations in C0-C2 was demonstrated by examination of the hypertrophic cardiomyopathy mutation R282W. The results presented here support a screening platform to identify small molecules that regulate N-terminal cMyBP-C conformational states.Note
Open access articleEISSN
1095-8584PubMed ID
35227736Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1016/j.yjmcc.2022.02.005
Scopus Count
Collections
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
Related articles
- Cardiac myosin-binding protein C interaction with actin is inhibited by compounds identified in a high-throughput fluorescence lifetime screen.
- Authors: Bunch TA, Guhathakurta P, Lepak VC, Thompson AR, Kanassatega RS, Wilson A, Thomas DD, Colson BA
- Issue date: 2021 Jul
- Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics.
- Authors: Colson BA, Thompson AR, Espinoza-Fonseca LM, Thomas DD
- Issue date: 2016 Mar 22
- Human cardiac myosin-binding protein C restricts actin structural dynamics in a cooperative and phosphorylation-sensitive manner.
- Authors: Bunch TA, Kanassatega RS, Lepak VC, Colson BA
- Issue date: 2019 Nov 1
- N-terminal extension in cardiac myosin-binding protein C regulates myofilament binding.
- Authors: Bunch TA, Lepak VC, Kanassatega RS, Colson BA
- Issue date: 2018 Dec
- A high-throughput fluorescence lifetime-based assay to detect binding of myosin-binding protein C to F-actin.
- Authors: Bunch TA, Lepak VC, Bortz KM, Colson BA
- Issue date: 2021 Mar 1