Show simple item record

dc.contributor.authorWilson, R.F.
dc.contributor.authorCañas, C.I.
dc.contributor.authorMajewski, S.R.
dc.contributor.authorCunha, K.
dc.contributor.authorSmith, V.V.
dc.contributor.authorBender, C.F.
dc.contributor.authorMahadevan, S.
dc.contributor.authorFleming, S.W.
dc.contributor.authorTeske, J.
dc.contributor.authorGhezzi, L.
dc.contributor.authorJönsson, H.
dc.contributor.authorBeaton, R.L.
dc.contributor.authorHasselquist, S.
dc.contributor.authorStassun, K.
dc.contributor.authorNitschelm, C.
dc.contributor.authorGarciá-Hernández, D.A.
dc.contributor.authorHayes, C.R.
dc.contributor.authorTayar, J.
dc.date.accessioned2022-04-11T23:17:39Z
dc.date.available2022-04-11T23:17:39Z
dc.date.issued2022
dc.identifier.citationWilson, R. F., Cañas, C. I., Majewski, S. R., Cunha, K., Smith, V. V., Bender, C. F., Mahadevan, S., Fleming, S. W., Teske, J., Ghezzi, L., Jönsson, H., Beaton, R. L., Hasselquist, S., Stassun, K., Nitschelm, C., Garciá-Hernández, D. A., Hayes, C. R., & Tayar, J. (2022). The Influence of 10 Unique Chemical Elements in Shaping the Distribution of Kepler Planets. Astronomical Journal.
dc.identifier.issn0004-6256
dc.identifier.doi10.3847/1538-3881/ac3a06
dc.identifier.urihttp://hdl.handle.net/10150/663906
dc.description.abstractThe chemical abundances of planet-hosting stars offer a glimpse into the composition of planet-forming environments. To further understand this connection, we make the first ever measurement of the correlation between planet occurrence and chemical abundances for ten different elements (C, Mg, Al, Si, S, K, Ca, Mn, Fe, and Ni). Leveraging data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and Gaia to derive precise stellar parameters ( σR⋆≈2.3%, σM⋆≈4.5% ) for a sample of 1018 Kepler Objects of Interest, we construct a sample of well-vetted Kepler planets with precisely measured radii ( σRp≈3.4% ). After controlling for biases in the Kepler detection pipeline and the selection function of the APOGEE survey, we characterize the relationship between planet occurrence and chemical abundance as the number density of nuclei of each element in a star's photosphere raised to a power, β. varies by planet type, but is consistent within our uncertainties across all ten elements. For hot planets (P = 1-10 days), an enhancement in any element of 0.1 dex corresponds to an increased occurrence of ≈20% for super-Earths (R p = 1-1.9 R ⊕) and ≈60% for sub-Neptunes (R p = 1.9-4 R ⊕). Trends are weaker for warm (P = 10-100 days) planets of all sizes and for all elements, with the potential exception of sub-Saturns (R p = 4-8 R ⊕). Finally, we conclude this work with a caution to interpreting trends between planet occurrence and stellar age due to degeneracies caused by Galactic chemical evolution and make predictions for planet occurrence rates in nearby open clusters to facilitate demographics studies of young planetary systems. © 2022. The American Astronomical Society. All rights reserved.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.rightsCopyright © 2022. The American Astronomical Society. All rights reserved. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleThe Influence of 10 Unique Chemical Elements in Shaping the Distribution of Kepler Planets
dc.typeArticle
dc.typetext
dc.contributor.departmentSteward Observatory, University of Arizona
dc.identifier.journalAstronomical Journal
dc.description.noteImmediate access
dc.description.collectioninformationThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.
dc.eprint.versionFinal published version
dc.source.journaltitleAstronomical Journal
refterms.dateFOA2022-04-11T23:17:39Z


Files in this item

Thumbnail
Name:
Wilson_2022_AJ_163_128.pdf
Size:
5.820Mb
Format:
PDF
Description:
Final Published Version

This item appears in the following Collection(s)

Show simple item record

Copyright © 2022. The American Astronomical Society. All rights reserved. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
Except where otherwise noted, this item's license is described as Copyright © 2022. The American Astronomical Society. All rights reserved. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.