Fate of twin stars on the unstable branch: Implications for the formation of twin stars
Name:
PhysRevD.105.043014.pdf
Size:
1.439Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Department of Physics, University of ArizonaDepartment of Astronomy, University of Arizona
Issue Date
2022
Metadata
Show full item recordPublisher
American Physical SocietyCitation
Espino, P. L., & Paschalidis, V. (2022). Fate of twin stars on the unstable branch: Implications for the formation of twin stars. Physical Review D.Journal
Physical Review DRights
Copyright © 2022 American Physical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Hybrid hadron-quark equations of state that give rise to a third family of stable compact stars have been shown to be compatible with the LIGO-Virgo event GW170817. Stable configurations in the third family are called hybrid hadron-quark stars. The equilibrium stable hybrid hadron-quark star branch is separated by the stable neutron star branch with a branch of unstable hybrid hadron-quark stars. The end state of these unstable configurations has not been studied, yet, and it could have implications for the formation and existence of twin stars-hybrid stars with the same mass as neutron stars but different radii. We modify existing hybrid hadron-quark equations of state with a first-order phase transition in order to guarantee a well-posed initial value problem of the equations of general relativistic hydrodynamics, and study the dynamics of nonrotating or rotating unstable twin stars via three-dimensional simulations in full general relativity. We find that unstable twin stars naturally migrate toward the hadronic branch. Before settling into the hadronic regime, these stars undergo (quasi)radial oscillations on a dynamical timescale while the core bounces between the two phases. Our study suggests that it may be difficult to form stable twin stars if the phase transition is sustained over a large jump in energy density, and hence it may be more likely that astrophysical hybrid hadron-quark stars have masses above the twin star regime. We also study the minimum-mass instability for hybrid stars, and find that these configurations do not explode, unlike the minimum-mass instability for neutron stars. Additionally, our results suggest that oscillations between the hadronic and quark phases could provide gravitational wave signals associated with such phase transitions in core-collapse supernovae and white dwarf-neutron star mergers. © 2022 American Physical Society.Note
Immediate accessISSN
2470-0010Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1103/PhysRevD.105.043014