Polarization of Rotationally Oblate Self-luminous Exoplanets with Anisotropic Atmospheres
Name:
Chakrabarty_2022_ApJ_927_51.pdf
Size:
1.967Mb
Format:
PDF
Description:
Final Published Version
Affiliation
Lunar and Planetary Laboratory, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
IOP Publishing LtdCitation
Chakrabarty, A., Sengupta, S., & Marley, M. S. (2022). Polarization of Rotationally Oblate Self-luminous Exoplanets with Anisotropic Atmospheres. Astrophysical Journal.Journal
Astrophysical JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The young self-luminous giant exoplanets are expected to be oblate in shape, owing to the high rotational speeds observed for some objects. Similar to the case of brown dwarfs, the thermal emission from these planets should be polarized by scatterings of molecules and condensate cloud particles, and the rotation-induced asymmetry of the planet's disk would yield to net nonzero detectable polarization. Considering an anisotropic atmosphere, we present here a three-dimensional approach to estimating the disk-averaged polarization that arises due to the oblateness of the planets. We solve the multiple-scattering vector radiative transfer equations at each location on the planet's disk and calculate the local Stokes vectors, and then calculate the disk-integrated flux and linear polarization. For a cloud-free atmosphere, the polarization signal is observable only in the visible wavelength region. However, the presence of clouds in the planetary atmospheres leads to a detectable amount of polarization in the infrared wavelength region where the planetary thermal emission peaks. Considering the different broadband filters of the SPHERE-IRDIS instrument of the Very Large Telescope, we present generic models for the polarization at different wavelength bands as a function of their rotation period. We also present polarization models for the exoplanets β Pic b and ROXs 42B b, as two representative cases that can guide future observations. Our insights into the polarization of young giant planets presented here would be useful for the upcoming polarimetric observations of the directly imaged planets. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ac4d33
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.