Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-envelope Core-collapse Supernovae
Name:
Shahbandeh_2022_ApJ_925_175.pdf
Size:
8.083Mb
Format:
PDF
Description:
Final Published Version
Author
Shahbandeh, M.Hsiao, E.Y.
Ashall, C.
Teffs, J.
Hoeflich, P.
Morrell, N.
Phillips, M.M.
Anderson, J.P.
Baron, E.
Burns, C.R.
Contreras, C.
Davis, S.
Diamond, T.R.
Folatelli, G.
Galbany, L.
Gall, C.
Hachinger, S.
Holmbo, S.
Karamehmetoglu, E.
Kasliwal, M.M.
Kirshner, R.P.
Krisciunas, K.
Kumar, S.
Lu, J.
Marion, G.H.
Mazzali, P.A.
Piro, A.L.
Sand, D.J.
Stritzinger, M.D.
Suntzeff, N.B.
Taddia, F.
Uddin, S.A.
Affiliation
Department of Astronomy, University of ArizonaSteward Observatory, University of Arizona
Issue Date
2022
Metadata
Show full item recordPublisher
IOP Publishing LtdCitation
Shahbandeh, M., Hsiao, E. Y., Ashall, C., Teffs, J., Hoeflich, P., Morrell, N., Phillips, M. M., Anderson, J. P., Baron, E., Burns, C. R., Contreras, C., Davis, S., Diamond, T. R., Folatelli, G., Galbany, L., Gall, C., Hachinger, S., Holmbo, S., Karamehmetoglu, E., … Uddin, S. A. (2022). Carnegie Supernova Project-II: Near-infrared Spectroscopy of Stripped-envelope Core-collapse Supernovae. Astrophysical Journal.Journal
Astrophysical JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
We present 75 near-infrared (NIR; 0.8-2.5 μm) spectra of 34 stripped-envelope core-collapse supernovae (SESNe) obtained by the Carnegie Supernova Project-II (CSP-II), encompassing optical spectroscopic Types IIb, Ib, Ic, and Ic-BL. The spectra range in phase from pre-maximum to 80 days past maximum. This unique data set constitutes the largest NIR spectroscopic sample of SESNe to date. NIR spectroscopy provides observables with additional information that is not available in the optical. Specifically, the NIR contains the strong lines of He i and allows a more detailed look at whether Type Ic supernovae are completely stripped of their outer He layer. The NIR spectra of SESNe have broad similarities, but closer examination through statistical means reveals a strong dichotomy between NIR "He-rich"and "He-poor"SNe. These NIR subgroups correspond almost perfectly to the optical IIb/Ib and Ic/Ic-BL types, respectively. The largest difference between the two groups is observed in the 2 μm region, near the He i λ2.0581 μm line. The division between the two groups is not an arbitrary one along a continuous sequence. Early spectra of He-rich SESNe show much stronger He i λ2.0581 μm absorption compared to the He-poor group, but with a wide range of profile shapes. The same line also provides evidence for trace amounts of He in half of our SNe in the He-poor group. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ac4030
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.