The Mass-Metallicity Relation at Cosmic Noon in Overdense Environments: First Results from the MAMMOTH-Grism HST Slitless Spectroscopic Survey
Name:
Wang_2022_ApJ_926_70.pdf
Size:
1.286Mb
Format:
PDF
Description:
Final Published Version
Author
Wang, X.
Li, Z.
Cai, Z.
Shi, D.D.
Fan, X.
Zheng, X.Z.
Bian, F.
Teplitz, H.I.
Alavi, A.
Colbert, J.
Henry, A.L.
Malkan, M.A.
Affiliation
Steward Observatory, University of ArizonaIssue Date
2022
Metadata
Show full item recordPublisher
IOP Publishing LtdCitation
Wang, X., Li, Z., Cai, Z., Shi, D. D., Fan, X., Zheng, X. Z., Bian, F., Teplitz, H. I., Alavi, A., Colbert, J., Henry, A. L., & Malkan, M. A. (2022). The Mass-Metallicity Relation at Cosmic Noon in Overdense Environments: First Results from the MAMMOTH-Grism HST Slitless Spectroscopic Survey. Astrophysical Journal.Journal
Astrophysical JournalRights
Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
The MAMMOTH-Grism slitless spectroscopic survey is a Hubble Space Telescope (HST) cycle 28 medium program, which is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters at z = 2-3 discovered using the MAMMOTH technique. We introduce this survey by presenting the first measurement of the mass-metallicity relation (MZR) at high redshift in overdense environments via grism spectroscopy. From the completed MAMMOTH-Grism observations in the field of the BOSS1244 protocluster at z = 2.24 ± 0.02, we secure a sample of 36 protocluster member galaxies at z ≈ 2.24, showing strong nebular emission lines ([O III], Hβ, and [O II]) in their G141 spectra. Using the multi-wavelength broadband deep imaging from HST and ground-based telescopes, we measure their stellar masses in the range of [109, 1010.4] M ⊙, instantaneous star formation rates (SFR) from 10 to 240 M ⊙ yr-1, and global gas-phase metallicities [13,1] of solar. Compared with similarly selected field-galaxy samples at the same redshift, our galaxies show, on average, increased SFRs by ∼0.06 dex and ∼0.18 dex at ∼1010.1 M ⊙ and ∼109.8 M ⊙, respectively. Using the stacked spectra of our sample galaxies, we derive the MZR in the BOSS1244 protocluster core as 12+log(O/H)=0.136±0.018 × log(M∗/M⊙)+7.082±0.175, showing a significantly shallower slope than that in the field. This shallow MZR slope is likely caused by the combined effects of efficient recycling of feedback-driven winds and cold-mode gas accretion in protocluster environments. The former effect helps low-mass galaxies residing in overdensities retain their metal production, whereas the latter effect dilutes the metal content of high-mass galaxies, making them more metal-poor than their coeval field counterparts. © 2022. The Author(s). Published by the American Astronomical Society.Note
Open access journalISSN
0004-637XVersion
Final published versionae974a485f413a2113503eed53cd6c53
10.3847/1538-4357/ac3974
Scopus Count
Collections
Except where otherwise noted, this item's license is described as Copyright © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.