• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Ultra-Sensitive and Selective Whispering Gallery Mode Microtoroid Chemical Sensor

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_19616_revised_sip1_m.pdf
    Size:
    6.859Mb
    Format:
    PDF
    Download
    Author
    Li, Cheng cc
    Issue Date
    2022
    Keywords
    Dark mode
    Gas sensor
    Microtoroid
    OFDR
    Plasmonic
    Whispering gallery mode
    Advisor
    Su, Judith
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Optical Whispering gallery mode (WGM) microresonators, which benefit from an ultra-high quality (Q) factor and small mode volume to significantly enhance light-matter interaction, stand out from other sensors, and are utilized in a variety of biochemical sensing or physical parameter detection applications. Physical or chemical reactions occurring in the evanescent field of the polymer-treated microtoroid equatorial plane will be translated into variations of the WGM spectra, which will, in turn, be recorded and analyzed through techniques such as frequency locking, balanced detection, and post data processing. The overall platform is known as the Frequency-locked optical whispering evanescent resonator (FLOWER) system. The performance and characteristics of ultra-sensitive and selective WGM gas sensors are evaluated and demonstrated in this dissertation. Two approaches to further improve the system are proposed, one based on plasmonic near-field enhancement to improve the sensitivity and the other on a fiber metrology method using Rayleigh backscattering to eliminate the thermal noise of the sensing system. Finally, another sensing application using the dual-FLOWER system for particle shape analysis is introduced.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Optical Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.