Ultra-Sensitive and Selective Whispering Gallery Mode Microtoroid Chemical Sensor
Publisher
The University of Arizona.Rights
Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.Abstract
Optical Whispering gallery mode (WGM) microresonators, which benefit from an ultra-high quality (Q) factor and small mode volume to significantly enhance light-matter interaction, stand out from other sensors, and are utilized in a variety of biochemical sensing or physical parameter detection applications. Physical or chemical reactions occurring in the evanescent field of the polymer-treated microtoroid equatorial plane will be translated into variations of the WGM spectra, which will, in turn, be recorded and analyzed through techniques such as frequency locking, balanced detection, and post data processing. The overall platform is known as the Frequency-locked optical whispering evanescent resonator (FLOWER) system. The performance and characteristics of ultra-sensitive and selective WGM gas sensors are evaluated and demonstrated in this dissertation. Two approaches to further improve the system are proposed, one based on plasmonic near-field enhancement to improve the sensitivity and the other on a fiber metrology method using Rayleigh backscattering to eliminate the thermal noise of the sensing system. Finally, another sensing application using the dual-FLOWER system for particle shape analysis is introduced.Type
textElectronic Dissertation
Degree Name
Ph.D.Degree Level
doctoralDegree Program
Graduate CollegeOptical Sciences