• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA CatalogsUA Libraries

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Fissure-Fed Volcanism on Mars and Earth

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_19619_sip1_m.pdf
    Size:
    130.6Mb
    Format:
    PDF
    Download
    Author
    Sutton, Sarah
    Issue Date
    2022
    Keywords
    Fissure vent
    Photogrammetry
    Planetary volcanology
    Terrestrial analog
    Topography
    Advisor
    Hamilton, Christopher W.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    I present investigations of the formation and degradation of volcanic landforms associatedwith fissure eruptions on Mars and Earth. A theme of my research is the use remote sensing data to investigate the morphology of landforms and active processes on Mars and the Earth. The morphologies of sinuous channels in Late Amazonian volcanic terrain onMars invite comparisons to channels formed by lava or water on Earth. I tested channel formation hypotheses by lava or water by conducting detailed geomorphological mapping in a region adjacent to the base of Olympus Mons. We interpreted the channels and associated fossae to be formed by alternating episodes of dike-fed fissure eruptions and groundwater release due to subsurface heating by sill emplacement. This alternating sequence of dike and sill emplacement, and associated surface eruptions of lava and water, is evidence of a complex, distributed volcanic system influenced by the tectonic stresses exerted by Olympus Mons as it continued to grow through the Amazonian Period. In a novel field study of the 2014–2015 Holuhraun fissure eruption vents in northernIceland, I created a topographic time series to measure the degradation of a large spatter rampart over the first five years post-eruption. I investigated the effects of spatter deposition on the styles and rates of erosion and found two distinct modes of topographic changes. The interior walls of the vent undergo discrete rockfall events, while the exterior slopes decrease in elevation overall, but show minimal evidence of gravitational sliding of unconsolidated scoria. The results of this study have implications for current vent landform evolution models, which predict slope changes by diffusive processes only. I propose instead a conceptual model that incorporates the probability distribution of rockfalls on the interior and diffusive processes on the exterior to better describe the earliest stages of vent erosion. I also present an analysis of the quality, precision, and accuracy of digital terrainmodels generated with stereo images from the Mars-orbiting High Resolution Imaging Science Experiment (HiRISE) camera, specifically applied to the measurement of active processes with time series of orthorectified images and digital terrain models.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Planetary Sciences
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055
    Tel 520-621-6442 | repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.