Instability from high-order resonant chains in wide-separation massive planet systems
Affiliation
Department of Astronomy and Steward Observatory, University of ArizonaIssue Date
2022Keywords
celestial mechanicschaos
planetary systems
planets and satellites: dynamical evolution and stability
Metadata
Show full item recordPublisher
Oxford University PressCitation
Murphy, M. M., & Armitage, P. J. (2022). Instability from high-order resonant chains in wide-separation massive planet systems. Monthly Notices of the Royal Astronomical Society.Rights
Copyright © 2022 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.Collection Information
This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at repository@u.library.arizona.edu.Abstract
Diversity in the properties of exoplanetary systems arises, in part, from dynamical evolution that occurs after planet formation. We use numerical integrations to explore the relative role of secular and resonant dynamics in the long-term evolution of model planetary systems, made up of three equal mass giant planets on initially eccentric orbits. The range of separations studied is dominated by secular processes, but intersects chains of high-order mean-motion resonances. Over time-scales of 108 orbits, the secular evolution of the simulated systems is predominantly regular. High-order resonant chains, however, can be a significant source of angular momentum deficit (AMD), leading to instability. Using a time series analysis based on a Hilbert transform, we associate instability with broad islands of chaotic evolution. Previous work has suggested that first-order resonances could modify the AMD of nominally secular systems and facilitate secular chaos. We find that higher order resonances, when present in chains, can have similar impacts. © 2022 The Author(s).Note
Immediate accessISSN
0035-8711Version
Final published versionae974a485f413a2113503eed53cd6c53
10.1093/mnras/stac750